DOUGLAS Gavin's profile
avatar

DOUGLAS Gavin

  • Microbiology and Immunology, McGill University, Montréal, Canada
  • Bacteria and archaea, Bioinformatics, Evolutionary genomics, Metagenomics, Population genomics
  • recommender

Recommendation:  1

Review:  1

Areas of expertise
I am a post-doc leveraging metagenomics data to investigate evolutionary questions. My education background includes: PhD - Microbiology and Immunology, Dalhousie University (2017-2021) MSc - Ecology and Evolutionary Biology, University of Toronto (2013-2015) BSc - Specialist in Evolutionary Biology, University of Toronto (2009-2013)

Recommendation:  1

15 Sep 2022
article picture

EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes

EukProt enables reproducible Eukaryota-wide protein sequence analyses

Recommended by based on reviews by 2 anonymous reviewers

 Comparative genomics is a general approach for understanding how genomes differ, which can be considered from many angles. For instance, this approach can delineate how gene content varies across organisms, which can lead to novel hypotheses regarding what those organisms do. It also enables investigations into the sequence-level divergence of orthologous DNA, which can provide insight into how evolutionary forces differentially shape genome content and structure across lineages. 
 
Such comparisons are often restricted to protein-coding genes, as these are sensible units for assessing putative function and for identifying homologous matches in divergent genomes. Although information is lost by focusing only on the protein-coding portion of genomes, this simplifies analyses and has led to crucial findings in recent years. Perhaps most dramatically, analyses based on hundreds of orthologous proteins across microbial eukaryotes are fundamentally changing our understanding of the eukaryotic tree of life (Burki et al. 2020).
 
These and other topics are highlighted in a new pre-print from Dr. Daniel Richter and colleagues, which describes EukProt (Richter et al. 2022): a database containing protein sets from 993 eukaryotic species. The authors provide a BLAST portal for matching custom sequences against this database (https://evocellbio.com/eukprot/) and the entire database is available for download (https://doi.org/10.6084/m9.figshare.12417881.v3). They also provide a subset of their overall dataset, ‘The Comparative Set’, which contains only high-quality proteomes and is meant to maximize phylogenetic diversity.
 
There are two major advantages of EukProt:
 
   1. It will enable researchers to quickly compare proteomes and perform phylogenomic analyses, without needing the skills or the time commitment to aggregate and process these data. The authors make it clear that acquiring the raw protein sets was non-trivial, as they were distributed across a wide variety of online repositories (some of which are no longer accessible!).
 
    2. Analyses based on this database will be more reproducible and easily compared across studies than those based on custom-made databases for individual studies. This is because the EukProt authors followed FAIR principles (Wilkinson et al. 2016) when building their database, which is a set of guidelines for enhancing data reusability. So, for instance, each proteome has a unique identifier in EukProt, and all species are annotated in a unified taxonomic framework, which will aid in standardizing comparisons across studies.
 
The authors make it clear that there is still work to be done. For example, there is an uneven representation of proteomes across different eukaryotic lineages, which can only be addressed by further characterization of poorly studied lineages. In addition, the authors note that it would ultimately be best for the EukProt database to be integrated into an existing large-scale repository, like NCBI, which would help ensure that important eukaryotic diversity was not ignored. Nonetheless, EukProt represents an excellent example of how reproducible bioinformatics resources should be designed and should prove to be an extremely useful resource for the field.
 
References

Burki F, Roger AJ, Brown MW, Simpson AGB (2020) The New Tree of Eukaryotes. Trends in Ecology & Evolution, 35, 43–55. https://doi.org/10.1016/j.tree.2019.08.008

Richter DJ, Berney C, Strassert JFH, Poh Y-P, Herman EK, Muñoz-Gómez SA, Wideman JG, Burki F, Vargas C de (2022) EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. bioRxiv, 2020.06.30.180687, ver. 5 peer-reviewed and recommended by Peer Community in Genomics. https://doi.org/10.1101/2020.06.30.180687

Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 160018. https://doi.org/10.1038/sdata.2016.18

Review:  1

24 Sep 2020
article picture

A rapid and simple method for assessing and representing genome sequence relatedness

A quick alternative method for resolving bacterial taxonomy using short identical DNA sequences in genomes or metagenomes

Recommended by based on reviews by Gavin Douglas and 1 anonymous reviewer

The bacterial species problem can be summarized as follows: bacteria recombine too little, and yet too much (Shapiro 2019).
Too little in the sense that recombination is not obligately coupled with reproduction, as in sexual eukaryotes. So the Biological Species Concept (BSC) of reproductive isolation does not strictly apply to clonally reproducing organisms like bacteria. Too much in the sense that genetic exchange can occur promiscuously across species (or even Domains), potentially obscuring species boundaries.
In parallel to such theoretical considerations, several research groups have taken more pragmatic approaches to defining bacterial species based on sequence similarity cutoffs, such as genome-wide average nucleotide identity (ANI). At a cutoff above 95% ANI, genomes are considered to come from the same species. While this cutoff may appear arbitrary, a discontinuity around 95% in the distribution of ANI values has been argued to provide a 'natural' cutoff (Jain et al. 2018). This discontinuity has been criticized as being an artefact of various biases in genome databases (Murray, Gao, and Wu 2020), but appears to be a general feature of relatively unbiased metagenome-assembled genomes as well (Olm et al. 2020). The 95% cutoff has been suggested to represent a barrier to homologous recombination (Olm et al. 2020), although clusters of genetic exchange consistent with BSC-like species are observed at much finer identity cutoffs (Shapiro 2019; Arevalo et al. 2019).
Although 95% ANI is the most widely used genomic standard for species delimitation, it is by no means the only plausible approach. In particular, tracts of identical DNA provide evidence for recent genetic exchange, which in turn helps define BSC-like clusters of genomes (Arevalo et al. 2019). In this spirit, Briand et al. (2020) introduce a genome-clustering method based on the number of shared identical DNA sequences of length k (or k-mers). Using a test dataset of Pseudomonas genomes, they find that 95% ANI corresponds to approximately 50% of shared 15-mers. Applying this cutoff yields 350 Pseudomonas species, whereas the current taxonomy only includes 207 recognized species. To determine whether splitting the genus into a greater number of species is at all useful, they compare their new classification scheme to the traditional one in terms of the ability to taxonomically classify metagenomic sequencing reads from three Pseudomonas-rich environments. In all cases, the new scheme (termed K-IS for "Kinship relationships Identification with Shared k-mers") yielded a higher number of classified reads, with an average improvement of 1.4-fold. This is important because increasing the number of genome sequences in a reference database – without consistent taxonomic annotation of these genomes – paradoxically leads to fewer classified metagenomic reads. Thus a rapid, automated taxonomy such as the one proposed here offers an opportunity to more fully harness the information from metagenomes.
KI-S is also fast to run, so it is feasible to test several values of k and quickly visualize the clustering using an interactive, zoomable circle-packing display (that resembles a cross-section of densely packed, three-dimensional dendrogram). This interface allows the rapid flagging of misidentified species, or understudied species with few sequenced representatives as targets for future study. Hopefully these initial Pseudomonas results will inspire future studies to apply the method to additional taxa, and to further characterize the relationship between ANI and shared identical k-mers. Ultimately, I hope that such investigations will resolve the issue of whether or not there is a 'natural' discontinuity for bacterial species, and what evolutionary forces maintain this cutoff.

References

Arevalo P, VanInsberghe D, Elsherbini J, Gore J, Polz MF (2019) A Reverse Ecology Approach Based on a Biological Definition of Microbial Populations. Cell, 178, 820-834.e14. https://doi.org/10.1016/j.cell.2019.06.033
 
Briand M, Bouzid M, Hunault G, Legeay M, Saux MF-L, Barret M (2020) A rapid and simple method for assessing and representing genome sequence relatedness. bioRxiv, 569640, ver. 5 peer-reveiwed and recommended by PCI Genomics. https://doi.org/10.1101/569640
 
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S (2018) High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications, 9, 5114. https://doi.org/10.1038/s41467-018-07641-9
 
Murray CS, Gao Y, Wu M (2020) There is no evidence of a universal genetic boundary among microbial species. bioRxiv, 2020.07.27.223511. https://doi.org/10.1101/2020.07.27.223511
 
Olm MR, Crits-Christoph A, Diamond S, Lavy A, Carnevali PBM, Banfield JF (2020) Consistent Metagenome-Derived Metrics Verify and Delineate Bacterial Species Boundaries. mSystems, 5. https://doi.org/10.1128/mSystems.00731-19
 
Shapiro BJ (2019) What Microbial Population Genomics Has Taught Us About Speciation. In: Population Genomics: Microorganisms Population Genomics. (eds Polz MF, Rajora OP), pp. 31–47. Springer International Publishing, Cham. https://doi.org/10.1007/13836201810

avatar

DOUGLAS Gavin

  • Microbiology and Immunology, McGill University, Montréal, Canada
  • Bacteria and archaea, Bioinformatics, Evolutionary genomics, Metagenomics, Population genomics
  • recommender

Recommendation:  1

Review:  1

Areas of expertise
I am a post-doc leveraging metagenomics data to investigate evolutionary questions. My education background includes: PhD - Microbiology and Immunology, Dalhousie University (2017-2021) MSc - Ecology and Evolutionary Biology, University of Toronto (2013-2015) BSc - Specialist in Evolutionary Biology, University of Toronto (2009-2013)