FERNANDEZ Rosa
- Animal Biodiversity and Evolution, Instituto de Biología Evolutiva, Barcelona, Spain
- Arthropods, Bioinformatics, ERGA, ERGA BGE, ERGA Pilot, Evolutionary genomics, Functional genomics, Terrestrial invertebrates
- recommender
Recommendation: 1
Reviews: 0
Recommendation: 1
The slow evolving genome of the xenacoelomorph worm Xenoturbella bocki
Genomic idiosyncrasies of Xenoturbella bocki: morphologically simple yet genetically complex
Recommended by Rosa Fernandez based on reviews by Christopher Laumer and 1 anonymous reviewerXenoturbella is a genus of morphologically simple bilaterians inhabiting benthic environments. Until very recently, only one species was known from the genus, Xenoturbella bocki Westblad 1949 [1]. Less than a decade ago, five more species were discovered (X. churro, X. monstrosa, X. profunda, X. hollandorum [2] and X. japonica [3]). These enigmatic animals lack an anus, a coelom, reproductive organs, nephrocytes and a centralized nervous system [1]. The systematic classification of the genus has substantially changed in the last decades, with first being considered as its own phylum (Xenoturbellida) and then being clustered together with acoels and nemertodermatids into the phylum Xenacoelomorpha [4,5]. The phylogenetic position of the xenacoelomorphs has been recalcitrant to resolution, with its position ranging from being the sister group to Nephrozoa (ie, protostomes and deuterostomes [6]) to the sister group to Ambulacraria (ie, Hemichordata and Echinodermata) in a clade called Xenambulacraria [4]. Recent studies based on expanded datasets and more refined analyses support either topology [7,8]. Either way, it is clear that additional studies on Xenoturbella could provide important insights into the origins of bilaterian traits such as the anus, the nephrons and the evolution of a centralized nervous system.
Small but mighty genome - In this work [9], the authors present the chromosome-level genome of X. bocki - the first one for xenoturbellids - and explore their genomic idiosyncrasies in the context of other animal phyla. The first thing they discuss is the complexity of the genome, with X. bocki having a similar number of genes to other bilaterians (despite its small size of 111Mb), retained ancestral metazoan synteny, conserved clusters of Hox genes, largely complete signaling pathways and most bilaterian miRNAs present. This is not a surprise, though, as we know that the relationship between genomic and morphological complexity is far from straightforward - for instance, protist lineages closely related to animals share many gene families with us [10], and it is not the presence or absence of these gene families but their evolutionary dynamics what defines complexity in each animal phyla (eg [11]). However, the relationship between both is far from well-understood, and having a high-quality genome is the first crucial step towards a holistic understanding of genome evolution, allowing us to ask questions about how and when genes are regulated, how they interact in 3D space, or how their epigenetic landscape is shaped, for instance.
Xenacoelomorphs: deuterostomes or not? - The authors also discuss the phylogenetic position of xenacoelomorphs (including the newly generated high-quality genome of X. bocki) based on a gene presence/absence matrix. Although there is much more to be done to robustly assess the phylogenetic position of the phylum, these analyses represent a first attempt to investigate what the phylogeny looks like after the addition of the new high-quality data. The new analyses reflected once more the previously recovered phylogenies mentioned above, but this time with a twist: X. bocki was recovered as the sister group to echinoderms, yet acoels appeared as sister to all deuterostomes, hence not recovering Xenacoelomorpha as monophyletic. Thus, it is clear that much remains to be explored to disentangle the phylogenetic position of these mysterious lineages, where more sophisticated methodologies such as synteny-based orthology inference or models of evolution accounting for heterotachy probably have an important role to play.
In any case, we are approaching a qualitative jump in how we understand phylogenomics thanks to efforts derived from the availability of chromosome-level genome assemblies for a growing number of species. Exciting times are ahead for us, evolutionary biologists, to explore what high-quality genomes - in combination with multiomics datasets - will reveal about animal evolution. I am personally really looking forward to it.
References
1. Westblad E. (1949). Xenoturbella bocki n.g., n.sp., a peculiar, primitive Turbellarian type. Arkiv för Zoologi 1, 3-29 (1949).
2. Rouse, G. W., Wilson, N. G., Carvajal, J. I. & Vrijenhoek, R. C. New deep-sea species of Xenoturbella and the position of Xenacoelomorpha. Nature 530, 94–97 (2016). https://doi.org/10.1038/nature16545
3. Nakano, H. et al. Correction to: A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella. BMC Evol. Biol. 18, 1–2 (2018). https://doi.org/10.1186/s12862-018-1190-5https://doi.org/10.1186/s12862-018-1190-5
4. Philippe, H. et al. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470, 255–258 (2011). https://doi.org/10.1038/nature09676
5. Hejnol, A. et al. Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc. Biol. Sci. 276, 4261–4270 (2009). https://doi.org/10.1098/rspb.2009.0896
6. Cannon, J. T. et al. Xenacoelomorpha is the sister group to Nephrozoa. Nature 530, 89–93 (2016). https://doi.org/10.1038/nature16520
7. Laumer, C. E. et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. Biol. Sci. 286, 20190831 (2019). https://doi.org/10.1098/rspb.2019.0831
8. Philippe, H. et al. Mitigating anticipated effects of systematic errors supports sister-group relationship between Xenacoelomorpha and Ambulacraria. Curr. Biol. 29, 1818–1826.e6 (2019). https://doi.org/10.1016/j.cub.2019.04.009
9. Schiffer, P. H., Natsidis, P., Leite D. J., Robertson, H., Lapraz, F., Marlétaz, F., Fromm, B., Baudry, L., Simpson, F., Høye, E., Zakrzewski, A-C., Kapli, P., Hoff, K. J., Mueller, S., Marbouty, M., Marlow, H., Copley, R. R., Koszul, R., Sarkies, P. & Telford, M .J. The slow evolving genome of the xenacoelomorph worm Xenoturbella bocki. bioRxiv (2023), ver. 4 peer-reviewed and recommended by Peer Community in Genomics. https://doi.org/10.1101/2022.06.24.497508
10. Suga, H. et al. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat. Commun. 4, 2325 (2013). https://doi.org/10.1038/ncomms3325
11. Fernández, R. & Gabaldón, T. Gene gain and loss across the metazoan tree of life. Nat Ecol Evol 4, 524–533 (2020). https://doi.org/10.1038/s41559-019-1069-x