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Estimating allele frequencies, ancestry proportions

and genotype likelihoods in the presence of
mapping bias

Mapping bias poses a significant challenge in the analysis of ancient DNA data. This
study introduces testable hypotheses that address the impact of mapping bias on
allele frequency estimates and admixture proportion estimation, particularly in
ancient DNA research. By testing the effect of mapping bias, the study clearly
demonstrates its influence on allele frequency estimation in empirical data. The
corrected genotype likelihood approach shows the best correlation with “true” allele
frequencies. The research further shows that while mapping bias can substantially
affect ancestry proportion estimates, the adjusted genotype likelihoods can mitigate
this issue. It also emphasizes the critical role of method selection, with some
methods exhibiting considerable variability in results. These findings help refine
methodologies in the field, making it possible to obtain more reliable results from
low-coverage ancient DNA data and thus moving the field forward.

Global impression

The article makes a valuable contribution to the field by introducing a novel method
for reducing mapping bias in ancient DNA analysis. It effectively outlines the problem
and current challenges, with the proposed approach appearing both innovative and
promising. The use of high-quality SNP array data adds value, as it provides a
reliable control. Although it would have been interesting to see the effect of mapping
bias on real data, the decision to simulate admixture data seems like a good choice
to address this. However, while the impact of the corrected genotype likelihood on
allele frequency and admixture estimation is significant, it looks very minor when
compared to the standard genotype likelihood method. A more detailed biological
interpretation of these results would be helpful to clarify why the modified genotype
likelihood only has such a modest effect on mapping bias. With this in mind, a
discussion of other potential sources of biases is still lacking.
Overall, the study provides valuable results to address the initial research question,
but further investigation is needed to fully explain and contextualize these findings.



Major comment
Introduction

The introduction is well-constructed, providing a clear understanding of the
challenges associated with mapping bias, the current strategies proposed to address
these issues, and the new approach for mitigating mapping bias and assessing its
impact. However, given that this project focuses on ancient DNA, it would be
beneficial to dedicate more time to introducing ancient DNA and explaining the
specific challenges involved in mapping this type of DNA. Additionally, the detailed
description of algorithms for estimating admixture proportions is more appropriate for
the methodology section, specifically under "2.4 Estimating Admixture Proportions."

Methodology

Regarding the methodology part, the four sections are relevant and well described.
However, there are instances where the choice of certain parameters or values could
benefit from more detailed justification or references such as bwa and ANGSD
parameters. Additionally, I have significant concerns regarding the reproducibility of
the simulations, as I encountered difficulties running your code for simulating
genomic data, because some of the required packages and modules seem to be
internal to the author’s system without detailed information about their contents. To
improve reproducibility, it is crucial to make these packages and modules available
to the community and provide clear instructions on the specific commands and
procedures used for the simulations.

Furthermore, I am concerned that selecting only SNPs with matching alleles in both
pseudohaploid and SNP chip data might introduce a selection bias. This filtering
approach excludes SNPs whose genotype is different due to methods, which might
overlook important differences caused by different genotyping methods. Comparing
allele frequencies between pseudohaploid data with all SNPs and pseudohaploid
data filtered to match the SNP chip could reveal if the filtering process introduces
significant biases and demonstrate that the SNP filtering does not significantly alter
the results.

Results

The three sections are relevant, but the analyses seem shallow. For example, it
would have been interesting to investigate whether certain genomic regions are
more susceptible to mapping bias. Is mapping bias more frequent in GC-rich regions,
repetitive sequences, or complex genomic areas? Visualizing the locations of these
potential differences and correlating them with specific genomic features would
provide deeper insights into the sources of mapping bias.



In general, the results lack proper biological interpretation and discussion, especially
regarding the admixture simulations, on aspects such as LD pruning and the choice
of reference genomes in function of each case. As it stands it is mainly descriptive.
For example, it would be valuable to discuss and possibly investigate why allele
frequencies from SNP arrays show lower correlation with those derived from
pseudohaploid genotype calls, while admixture proportion estimation with qpAdm,
which uses pseudohaploid genotype calls as input, appear to perform best.

Additionally, the paper would benefit from clearer conclusions at the end of each
result section to highlight the really important information to take home.

Some figures are not readable, particularly those comparing simulated and
estimated admixture proportions, as the use of white text on a gray background
makes it difficult to read the details. Adding tables with the actual values of estimated
admixture proportions would be helpful, as the small differences are hard to discern
from the graphs. Including a table with correlations between allele frequencies
values of SNP array and the different methods could also be valuable. Additionally, it
would be useful to include a figure showing the distribution of read balance values (r)
as supplementary material. This could help illustrate the types of mapping bias
(reference or alternate) and the ratio between them.

Discussion

The limits of this study are discussed, but the authors should clarify some practical
points such as whether it is better to use a reference genome that is closer or more
distant genetically in order to compute allele frequencies or compute admixture
proportions, since these results seem to be contradictory between computation of
allele frequencies and admixture proportion inference.

The authors should consider adding some perspectives to this work, particularly in
relation to the limitations of the study. While the issue of mapping bias has been
reduced, it has not been completely resolved, as seen in the simulated data.
Moreover, the impact on admixture proportion inference with read data remains
unknown. As mentioned by the authors, mapping bias might have a greater effect on
real datasets due to higher genomic variability, so the genotype likelihood correction
could potentially reduce this impact more significantly. It would be valuable to
evaluate the effect of the corrected genotype likelihood on non-simulated data.

Additional and minor comments
All other comments can be found in the PDF file as ‘comment’ elements.
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Abstract

Population genomic analyses rely on an accurate and unbiased characterization of the
genetic setup of the studied population. For short-read, high-throughput sequencing data,
mapping sequencing reads to a linear reference genome can bias population genetic infer-
ence due to mismatches in reads carrying non-reference alleles. In this study, we investigate
the impact of mapping bias on allele frequency estimates from pseudohaploid data, com-
monly used in ultra-low coverage ancient DNA sequencing. To mitigate mapping bias,
we propose an empirical adjustment to genotype likelihoods. Simulating ancient DNA
data with realistic post-mortem damage, we compare widely used methods for estimating
ancestry proportions under different scenarios, including reference genome selection, pop-
ulation divergence, and sequencing depth. Our findings reveal that mapping bias can lead
to differences in estimated admixture proportion of up to 4% depending on the reference
population. However, the choice of method has a much stronger impact, with some meth-
ods showing differences of 10%. qpAdm appears to perform best at estimating simulated
ancestry proportions, but it is sensitive to mapping bias and its applicability may vary
across species due to its requirement for additional populations beyond the sources and
target population. Our adjusted genotype likelihood approach largely mitigates the effect
of mapping bias on genome-wide ancestry estimates from genotype likelihood-based tools.
However, it cannot account for the bias introduced by the method itself or the noise in
individual site allele frequency estimates due to low sequencing depth. Overall, our study
provides valuable insights for obtaining precise estimates of allele frequencies and ancestry
proportions in empirical studies.

1 Introduction

A phenomenon gaining an increasing degree of attention in population genomics is mapping bias in1

re-sequencing studies employing short sequencing reads (Orlando et al., 2013; Gopalakrishnan et al.,2

2017; Günther and Nettelblad, 2019; Martiniano et al., 2020; Chen et al., 2021; Oliva et al., 2021;3

Prasad et al., 2022; Gopalakrishnan et al., 2022; Thorburn et al., 2023; Koptekin et al., 2023). As4

most mapping approaches employ linear reference genomes, reads carrying the same allele as the5

reference will have fewer mismatches and higher mapping scores than reads carrying an alternative6
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allele leading to some alternative reads being rejected. As a consequence, sequenced individuals may7

seem more similar to the reference genome (and hence, the individual/population/species it originates8

from) than it is in reality, biasing variant calling and downstream analysis. The effect of mapping bias9

is exacerbated in ancient DNA studies due to post-mortem DNA damage such as fragmentation and10

cytosine deamination to uracil (which is sequenced as thymine) (Orlando et al., 2021). The human11

reference genome is a mosaic sequence of multiple individuals from different continental ancestries12

(Green et al., 2010; Church et al., 2015). In most other species with an existing reference genome13

sequence, this genome represents a single individual from a certain population while for studies in14

species without a reference genome, researchers are limited to the genomes of related species. One15

consequence is that the sequence at a locus in the reference genome may either represent an ingroup16

or an outgroup relative to the other sequences studies in a population genomic analysis. It has been17

shown that this can bias estimates of heterozygosity, phylogenetic placement, assessment of gene flow,18

and population affinity (see e.g. Orlando et al., 2013; Heintzman et al., 2017; Gopalakrishnan et al.,19

2017; Günther and Nettelblad, 2019; van der Valk et al., 2020; Mathieson et al., 2020; Prasad et al.,20

2022). Notably, while mapping bias mostly manifests as reference bias, it also exists as alternative21

bias depending on the studied individual and the particular position in the genome (Günther and22

Nettelblad, 2019).23

Different strategies have been proposed to mitigate or remove the effect of mapping bias. These24

include mapping to an outgroup species (Orlando et al., 2013), mapping to multiple genomes simul-25

taneously (Huang et al., 2013; Chen et al., 2021), mapping to variation graphs (Martiniano et al.,26

2020), the use of an IUPAC reference genome (Oliva et al., 2021), masking variable sites (Koptekin27

et al., 2023) or filtering of “biased reads” (Günther and Nettelblad, 2019). All of these strategies28

have significant limitations, such as exclusion of some precious sequencing reads (outgroup mapping29

or filtering) or requiring additional data that may not be available for all species prior to the particular30

study (variation graphs, IUPAC reference genomes, or mapping to multiple genomes). Therefore, it31

would be preferable to develop a strategy that uses the available sequencing reads and accounts for32

potential biases in downstream analyses. Genotype likelihoods (Nielsen et al., 2011) represent one33

promising apporach that can be used with low- and medium-depth sequencing data (Lou et al., 2021).34

Instead of working with hard genotype calls at each position one can use P (D|G), the probability35

of observing a set of sequencing reads D conditional on a true genotype G. Different approaches36

exist for calculating genotype likelihoods with the main aim to account for uncertainty due to random37

sampling of sequencing reads and sequencing error. Genotype likelihoods can be used in a wide range38

of potential applications for downstream analysis which include imputation (Rubinacci et al., 2021),39

estimation of admixture proportions (Skotte et al., 2013; Jørsboe et al., 2017; Meisner and Albrecht-40

sen, 2018), principal component analysis (PCA, Meisner and Albrechtsen, 2018), relatedness analysis41

(Korneliussen and Moltke, 2015; Hanghøj et al., 2019; Nøhr et al., 2021), or to search for signals of42

selection (Korneliussen et al., 2013; Fumagalli et al., 2013). Many of these are available as part of the43

popular software package ANGSD (Korneliussen et al., 2014). However, some downstream results can44

depend on the specific genotype likelihood model selected (Lou et al., 2021).45

To render genotype likelihoods and their downstream applications more robust to the presence of46

mapping bias, we introduce a modified genotype likelihood, building off of the approach in Günther47

and Nettelblad (2019). We use modified reads carrying the other allele at biallelic SNP positions to48

assess the distribution of mapping bias and to obtain an empirical quantification of the locus- and49

individual-specific mapping bias. We then calculate a modified genotype likelihood to account for50

mapping bias. The approach is similar to snpAD (Prüfer, 2018), with the contrast that our aim is not51

to call genotypes all sites and we are using a set of ascertained biallelic SNPs allowing us to estimate52

mapping bias locus-specific rather than using one estimate across the full genome of the particular53

individual.54

We examine two downstream applications of genetic data to determine the impact of mapping bias,55

and assess the ability of our corrected genotype likelihood to ameliorate issues with mapping bias.56

First, we look at a very high-level summary of genetic variation: allele frequencies. Because allele57
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frequencies can be estimated from high-quality SNP array data, we can use them as a control and58

assess the impact of mapping bias and our corrected genotype likelihood in real short-read data.59

Next, we examine the assignment of ancestry proportions. Most currently used methods trace60

their roots back to the software STRUCTURE (Pritchard et al., 2000; Falush et al., 2003, 2007; Hubisz61

et al., 2009), a model-based clustering approach modeling each individual’s ancestry from K source62

populations (PSD model). These source populations can be inferred from multi-individual data (unsu-63

pervised) or groups of individuals can be designated as sources (supervised). Popular implementations64

of this model differ in terms of input data (e.g. genotype calls or genotype likelihoods), optimization65

procedure and whether they implement a supervised and/or unsupervised approach (Table 1). In66

the ancient DNA field, f statistics (Patterson et al., 2012) and their derivatives are fundamental to67

many studies due to their versatility, efficiency and their ability to work with pseudohaploid data.68

Consequently, methods based on f statistics are also often used for estimating ancestry proportions in69

ancient DNA studies. One method that uses f statistics for supervised estimation of ancestry propor-70

tions is qpAdm (Haak et al., 2015; Harney et al., 2021). In addition to the source populations (“left”71

populations), a set of more distantly related “right” populations is needed for this approach. Ancestry72

proportions are then estimated from a set of f4 statistics calculated between the target population73

and the “left” and “right” populations. We simulate data sequencing data with realistic ancient DNA74

damage under a demographic model with recent gene flow (Figure 1) and then compare the different75

methods in their ability to recover the estimated admixture proportion and how sensitive they are to76

mapping bias.77

2 Materials and Methods78

2.1 Correcting genotype-likelihoods for mapping bias79

Two versions of genotype likelihoods (Nielsen et al., 2011) were calculated for this study. First, we80

use the direct method as included in the original version of GATK (McKenna et al., 2010) and also81

implemented in ANGSD (Korneliussen et al., 2014). For a position ` covered by n reads, the genotype82

likelihood is defined as the probability for observing the bases D` = {b`1, b`2, . . . , b`n} if the true83

genotype is A1A2:84

P (D`|G` = A1, A2) =
n∏

i=1

P (b`i|G` = A1, A2) =
n∏

i=1

P (b`i|A1) + P (b`i|A2)

2
(1)

with85

P (b`i|A) =

{
e`i
3 if b = A

1− e`i if b 6= A

where e`i is the probability of a sequencing error of read i at position `, calculated from the phred scaled86

base quality score Q`i, i.e. e`i = 10−Q`i/10. The calculation of genotype likelihoods was implemented87

in Python 3 using the pysam library (https://github.com/pysam-developers/pysam), a wrapper88

around htslib and the samtools package (Li et al., 2009) or by calling samtools mpileup and parsing89

the output in the Python script.90

To quantify the impact of mapping bias, we restrict the following analysis to ascertained biallelic91

SNPs and modify each original read to carry the other allele at the SNP position, as in Günther92

and Nettelblad (2019). The modified reads are then remapped to the reference genome using the93

same mapping parameters. If there were no mapping bias, all modified reads would map to the same94

position as the unmodified original read. Consequently, when counting both original and modified95

reads together, we should observe half of our reads carrying the reference allele and the other half96

carrying the alternative allele at the SNP position. We can summarize the read balance at position ` as97

r`, which measures the proportion of reference alleles among all original and modified reads mapping98
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to the position. Without mapping bias, we would observe r` = 0.5. Under reference bias, we would99

observe r` > 0.5 and under alternative bias r` < 0.5. We can see r` as an empirical quantification100

of the locus- and individual-specific mapping bias. Similar to Prüfer (2018), we can then modify101

equation 1 for heterozygous sites to102

P (D`|G` = R`, A`) =
n∏

i=1

r`P (b`i|R`) + (1− r`)P (b`i|A`) (2)

where R` is the reference allele at position ` and A` is the alternative allele. Genotype likelihood-103

based methods are tested with both genotype likelihood versions. All code used in this study can be104

found under https://github.com/tgue/refbias_GL105

2.2 Empirical Data106

To estimate the effect of mapping bias in empirical data we obtained low coverage BAM files for ten107

FIN individuals and 10 YRI individuals from the 1000 Genomes project (Table S1) (Auton et al.,108

2015). We also downloaded Illumina Omni2.5M chip genotype calls for the same individuals. The109

SNP data was filtered to restrict to sites without missing data in the 20 selected individuals, a minor110

allele frequency of at least 0.2 in the reduced dataset (considering individuals from both populations111

together), and excluding A/T and C/G SNPs to avoid strand misidentification. Reads mapping112

to these positions were extracted from the BAM files using samtools (Li et al., 2009). To make the113

sequence data more similar to fragmented ancient DNA, each read was split into two halves at its mid-114

point and each sub-read was re-mapped separately. For mapping, we used bwa aln (Li and Durbin,115

2009) and the non-default parameters -l 16500 (to avoid seeding), -n 0.01 and -o 2. Only reads with116

mapping qualities of 30 or higher were kept for further analysis. Pseudohaploid genotypes were called117

with ANGSD v0.933 (Korneliussen et al., 2014) by randomly drawing one read per SNP as described for118

the simulations below and only SNPs with the same two alleles in pseudohaploid and SNP chip data119

were included in all comparisons. Remapping of modified reads and genotype likelihood calculation120

were performed as described above. Allele frequencies were calculated from genotype likelihoods with121

ANGSD v0.933 (Korneliussen et al., 2014) using -doMaf 4 and the human reference as “ancestral” allele122

in order to calculate the allele frequency of the reference alleles. SNP calls from the genotyping array123

and pseudohaploid calls were converted to genotype likelihood files assuming no genotyping errors, so124

the allele frequency estimation for this data could be based on ANGSD as well.125

2.3 Simulation of genomic data126

Population histories are simulated using msprime v0.6.2 (Kelleher et al., 2016). We simulate a demo-127

graphic history where a target population T receives a single pulse of admixture with proportion f128

from source S3 50 generations ago. Furthermore, we simulate population S1 which forms an outgroup129

and population S2 which is closer to T than S3 to serve as second source for estimating ancestry pro-130

portions (Figure 1). Finally, we simulate populations O1, O2, O3, and O4 as populations not involved131

in the admixture events which split off internal branches of the tree to serve as “right” populations132

for qpAdm (Haak et al., 2015; Harney et al., 2021). Split times are scaled relative to the deepest split133

t123: the split between (S2, T ) and S3, t23, is set to 0.5× t123 while the split between T and S2 is set134

to 0.2× t123. Different values of 20,000 and 50,000 generations are tested for t123 approximately corre-135

sponding to divergence times within and between (sub-)species. Mutation rate was set to 2.5× 10−8
136

and recombination rate was set to 2× 10−8. The effective population size along all branches is 10,000.137

For each population, 21 diploid individuals (i.e. 42 haploid chromosomes) with 5 chromosome pairs138

of 20,000,000 bp each were simulated.139

For each chromosome, a random ancestral sequence was generated with a GC content of 41% corre-140

sponding to the GC content of the human genome (Lander et al., 2001). Transversion polymorphisms141

were then placed along the sequence according to the msprime simulations. The first sequences from142

populations S1, S2 and S3 were used as reference genomes. Pairs of sequences were then considered as143
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Figure 1: Illustration of the population relationships used in the simulations. Branch lengths are not
to scale

diploid individuals and gargammel (Renaud et al., 2017) was used to simulate next-generation sequenc-144

ing data with ancient DNA damage. Data were simulated to mimic data generated with an Illumina145

HiSeq 2500 sequencing machine assuming the post-mortem damage pattern observed when sequencing146

Neandertals in Briggs et al. (2007). For each individual, fragment sizes followed a log-normal distribu-147

tion with a location between 3.3 and 3.8 (randomly drawn per individual from a uniform distribution)148

and a scale of 0.2, corresponding to an average fragment length per individual between 27 and 46bp.149

Fragments shorter than 20bp were excluded. No contaminating sequences were simulated. Sequencing150

reads were then trimmed and merged with AdapterRemoval (Schubert et al., 2016). Reads were then151

mapped to the different reference genomes using bwa aln v0.7.17 (Li and Durbin, 2009) together with152

the commonly used non-default parameters -l 16500 (to avoid seeding), -n 0.01 and -o 2 (Schubert153

et al., 2012; Oliva et al., 2021). BAM files were handled using samtools v1.5 (Li et al., 2009).154

Genotype calling and downstream analysis were performed separately for the three reference genomes155

originating from populations S1, S2 and S3. To avoid ascertainment bias, polymorphic SNPs were as-156

certained from the simulated true genotypes and restricted to SNPs with a minimum allele frequency157

of 10% in the outgroup population S1. 100,000 SNPs were selected at random using Plink v1.90158

(Chang et al., 2015) –thin-count. Pseudohaploid calls were then generated for all individuals at these159

sites using ANGSD v0.917 (Korneliussen et al., 2014) by randomly sampling a single read per position160

with minimum base and mapping quality of at least 30. This step was performed using ANGSD with161

the parameters -checkBamHeaders 0 -doHaploCall 1 -doCounts 1 -doGeno -4 -doPost 2 -doPlink 2162

-minMapQ 30 -minQ 30 -doMajorMinor 1 -GL 1 -domaf 1. Files were then converted to Plink format163

using haploToPlink distributed with ANGSD (Korneliussen et al., 2014). For downstream analyses,164

the set of SNPs was further restricted to sites with less than 50 % missing data and a minor allele165

frequency of at least 10% in S1, S2, S3 and T together. Binary and transposed Plink files were166

handled using Plink v1.90 (Chang et al., 2015). convertf (Patterson et al., 2006; Price et al., 2006)167

was used to convert between Plink and EIGENSTRAT file formats. Plink was also used for linkage168

disequilibrium (LD) pruning with parameters –indep-pairwise 200 25 0.7.169

2.4 Estimating admixture proportions170

We used five different approaches to estimate ancestry proportions in our target population T . In171

addition to differences in the underlying model and implementations, for users the tools differ in the172

type of their input data (genotype calls or genotype likelihoods) and whether their approaches are173

unsupervised and/or supervised (Table 1).174

All software was set to estimate ancestry assuming two source populations. Unless stated otherwise,175
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Table 1: Overview of the different tools used for ancestry estimation.

Method Genotype calls Genotype-likelihoods Unsupervised Supervised Citation
ADMIXTURE X - X X Alexander et al. (2009);

Alexander and Lange
(2011)

qpAdm X - - X Haak et al. (2015); Harney
et al. (2021)

NGSadmix - X X - Skotte et al. (2013)
fastNGSadmix -* X - X Jørsboe et al. (2017)

* source populations for fastNGSadmix can be either genotype calls or genotype likelihoods

S2 and S3 were set as sources and T as the target population while no other individuals were included176

in when running the software. ADMIXTURE (Alexander et al., 2009; Alexander and Lange, 2011) is the177

only included method that has both a supervised (i.e. with pre-defined source populations) and an178

unsupervised mode. Both options were tested using the –haploid option without multithreading as the179

genotype calls were pseudo-haploid. For qpAdm (Haak et al., 2015; Harney et al., 2021), populations180

O1, O2, O3 and O4 served as “right” populations. qpAdm was run with the options allsnps: YES and181

details: YES. For fastNGSadmix (Jørsboe et al., 2017), allele frequencies in the source populations182

were estimated using NGSadmix (Skotte et al., 2013) with the option -printInfo 1. fastNGSadmix183

was then run to estimate ancestry per individual without bootstrapping. NGSadmix (Skotte et al.,184

2013) was run in default setting. The mean ancestry proportions across all individuals in the target185

population was used as an ancestry estimate for the entire population. In the case of unsupervised186

approaches, the clusters belonging to the source populations were identified as those where individuals187

from S2 or S3 showed more than 90 % estimated ancestry.188

3 Results189

3.1 Mapping bias in empirical data190

We first tested the effect of mapping bias on allele frequency estimates in empirical data. We selected191

low to medium coverage (mostly between 2 and 4X depth except for one individual at 14X, Table S1)192

for ten individuals from each of two 1000 Genomes populations (FIN and YRI). We used ANGSD to193

estimate allele frequencies and compare them to allele frequencies estimated from the same individuals194

genotyped using a SNP array and pseudohaploid genotype data. As the genotyping array should be195

less affected by mapping bias, we consider these estimates as “true” allele frequencies.196

Overall, genotype likelihood-based point estimates of the allele frequencies tend towards more inter-197

mediate allele frequencies while pseudohaploid genotypes and “true” genotypes result in more alleles198

estimated to have low and high alternative allele frequency (Figure 2A and B). In FIN, the pseu-199

dohaploid genotypes lead to a slight underestimation of the reference allele frequencies (Figure 2A),200

while this signal is reversed in YRI (Figure 2B), a pattern which could be related to the fact that201

most of the human reference genome has European ancestry (Green et al., 2010; Church et al., 2015;202

Günther and Nettelblad, 2019). In both tested populations, the default version of genotype likelihood203

calculation produced an allele frequency distribution slightly shifted towards lower non-reference allele204

frequency estimates (Paired Wilcoxon test p < 2.2 × 10−22 in both populations). The allele frequen-205

cies estimated from the corrected genotype likelihoods exhibit a slightly better correlation with the206

“true” frequencies in both FIN (Pearson’s correlation coefficient 0.9297 [0.9294, 0.9301] vs. 0.9310207

[0.9307, 0.9313] for uncorrected and corrected, respectively; p = 2.14× 10−7) and YRI (Pearson’s cor-208

relation coefficient 0.9444 [0.9442, 0.9447] vs. 0.9459 [0.9457, 0.9462] for uncorrected and corrected,209

respectively; p = 1.8 × 10−14). Notably, allele frequency estimates from pseudohaploid data display210

the lowest correlation with the “true” frequencies in both FIN (r = 0.8571) and YRI (r = 0.8344)211

indicating that while the distribution of allele frequencies seems close to the true spectrum (Figure212
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Figure 2: Differences in allele frequency estimates. Binned spectrum of non-reference alleles in FIN
(A) and YRI (B) for the four different estimation methods. Note that the specific ascer-
tainment of common SNPs in the joint genotyping data contributes to the enrichment of
variants with intermediate frequencies. Boxplots for the differences between default geno-
type likelihood-based estimates and corrected genotype likelihood-based estimates, default
genotype likelihood-based estimates and SNP array-based estimates, corrected genotype
likelihood-based estimates, pseudohaploid (PH) genotype-based and SNP array-based esti-
mates (C) in the FIN population and (D) in the YRI population. (E) is showing boxplots of
the per-site population differentiation (measured as f2 statistic) for the four allele frequency
estimates.
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2A and B), the estimates at individual loci are rather noisy.213

Differences at individual sites, however, display some extreme outliers with ∼ 0.1% of the SNPs214

showing more than 50% difference between estimates from SNP chips and sequencing data, which could215

hint at systematic technological differences between the two data types at those sites. This pattern of216

outliers is slightly less pronounced when using the corrected genotype likelihoods (Table S2). Interest-217

ingly, despite the overall closer concordance between the pseudohaploid allele frequency spectrum and218

the SNP array allele frequency spectrum, there is significantly higher variation between pseudohaploid219

and true frequencies at any particular hint, suggesting that this is a general difference between NGS220

and SNP chip data. In Günther and Nettelblad (2019), we found that different parts of the human221

reference genome exhibit different types of mapping bias. We find a similar result here: the parts of222

the reference genome that can be attributed to African ancestry (Green et al., 2010) display a mean223

and median difference of nearly 0 in FIN but allele frequencies remain higher than array estimates224

in YRI (Figure S1). In contrast, the European and East Asian parts of the reference genome show a225

distribution of differences around 0 in YRI but positive means and median in FIN (Figures S2 and226

S3). This confirms the utility of reducing the effect of mapping bias by mapping against a reference227

genome from an outgroup. A consequence of the systematic over-estimation of the allele frequencies228

when using genotype likelihoods is that the population differentiation (here measured as f2 statistic)229

is reduced compared to estimates from the SNP array or pseudohaploid genotype calls (Figure 2E).230

3.2 Estimation of admixture proportions based on genotype calls231

We compare the accuracy of the different methods for estimating admixture proportion under a set232

of different population divergence times, sequencing depths, and with or without LD pruning of the233

SNP panel. For most parts of this results section, we will focus on the scenario with an average234

sequencing depth of 0.5X where the deepest population split (t123) was 50,000 generations ago and235

the split (t23) between the relevant sources dating to 25,000 generations ago. Consequently, mapping236

the reads against a reference genome sequence from one or the other source would be equivalent to a237

study comparing (sub-)species where the reference genome originated from one of those populations.238

Results for other population divergences and sequencing depths are shown in Figures S4-S9.239

We begin by assessing methods that require hard genotype calls, ADMIXTURE and qpAdm. For these240

approaches, we used single randomly drawn reads per individual and site to generate pseudo-haploid241

data in the target population. The popular implementation of the PSD (Pritchard et al., 2000) model242

working with SNP genotype calls, ADMIXTURE (Alexander et al., 2009; Alexander and Lange, 2011),243

has both supervised and unsupervised modes. Both modes show similar general patterns: low (10%)244

admixture proportions are estimated well while medium to high (≥ 50%) admixture proportions are245

over-estimated (Figure 3). On the full SNP panel, the median estimated admixture proportion differs246

up to ∼ 4% when mapping to reference genomes representing either of the two sources (S2 or S3)247

while mapping to the outgroup reference genome (S1) results in estimates intermediate between the248

two. LD pruning slightly reduces mapping bias and reduces the overestimation, at least for high (90%)249

admixture proportions. qpAdm (Haak et al., 2015; Harney et al., 2021), on the other hand, estimated all250

admixture proportions accurately when the outgroup (S1) was used for the reference genome sequence251

and when the full SNP panel was used. The median estimates of admixture differed up to 3% between252

mapping to reference genomes from one of the source populations (S2 or S3). Notably, LD pruning253

increased the noise of the qpAdm estimates (probably due to the reduced number of SNPs) and led254

to all admixture proportions being slightly underestimated (Figure 3). The extent of mapping bias255

decreases with lower population divergence across all methods (Figure S4), as mapping bias should256

correlate with distance to the reference genome sequence. Conversely, increasing sequencing depth257

mostly reduced noise but not mapping bias (Figures S5 and S8) as the genotype-based methods258

benefit from the increased number of SNPs but the genotype calls do not increase certainty when259

multiple reads are mapping to the same position.260
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Figure 3: Simulation results for genotype call based methods using t123 = 50000 generations and a
sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture proportions.

3.3 Estimation of admixture proportions based on genotype likelihoods261

We next examined the performance of genotype-likelihood-based approaches to estimate admixture262

proportions. In principle, genotype likelihoods should be able to make better use of all of the data in263

ancient DNA, because more than a single random read can be used per site. Moreover, we are able264

to explicitly incorporate our mapping bias correction into the genotype likelihood. We compared the265

supervised fastNGSadmix (Jørsboe et al., 2017) to the unsupervised NGSadmix (Skotte et al., 2013).266

fastNGSadmix shows the highest level of overestimation of low to medium admixture proportions267

(≤ 50%) among all tested approaches while high admixture proportions (90%) are estimated well268

(Figure 4). Mapping bias caused differences of up to∼ 3% in the admixture estimates when mapping to269

the different reference genomes. LD pruning enhances the overestimation of low admixture proportions270

while leading to an underestimation of high admixture proportions. Notably, when employing the271

corrected genotype-likelihood the estimated admixture proportions when mapping to S2 or S3 are272

slightly more similar than with the default formula without correction, showing that the correction273

makes the genome-wide estimates less dependent on the reference sequence used for mapping while274

not fully removing the effect. The estimates when using the outgroup S1 as reference are slightly275

higher for high admixture proportions (90%). The results for NGSadmix show similar patterns to276

ADMIXTURE with a moderate overestimation of admixture proportions ≥ 50% (Figure 4). Mapping277

bias caused differences of up to ∼ 4% in the admixture estimates when mapping to the different278

reference genomes. After LD pruning, estimated admixture proportions for higher simulated values279

were closer to the simulated values. Furthermore, employing the mapping bias corrected genotype-280

likelihoods made the estimated admixture proportions less dependent on the reference genome used281

during mapping. Notably, the extent of over-estimation for both methods seems to be somewhat282

negatively correlated with population divergence (Figures S6 and 4), i.e. increased distances between283

the source populations reduces the method bias. Further patterns are as expected: the extent of284

mapping bias is correlated with population divergence and increased sequencing depth reduces noise285

(Figures S6, 4, S7 and S9).286
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Figure 4: Simulation results for genotype likelihood based methods using t123 = 50000 generations and
a sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture proportions.

4 Discussion287

We illustrate the impacts of mapping bias on downstream applications, such as allele frequency esti-288

mation and ancestry proportion estimation, and we introduced a new approach to recalibrate genotype289

likelihoods in the presence of mapping bias to alleviate its effects. The impact of mapping bias in290

our comparisons is small but pervasive suggesting that it can have an effect on the results of different291

types of analysis in empirical studies.292

Increasing sample sizes in ancient DNA studies have motivated a number of studies aiming to detect293

selection in genome-wide scans or to investigate phenotypes in ancient populations (e.g. Mathieson294

et al., 2015; Cox et al., 2022; Klunk et al., 2022; Gopalakrishnan et al., 2022; Mathieson and Terhorst,295

2022; Davy et al., 2023; Barton et al., 2023; Hui et al., 2024). Such investigations are potentially very296

sensitive to biases and uncertainties in genotype calls or allele frequencies at individual sites while297

certain effects will average out for genome-wide estimates such as ancestry proportions. Concerns298

about certain biases and how to estimate allele frequencies have even reduced confidence in the results299

of some studies (Gopalakrishnan et al., 2022; Barton et al., 2023). Our results indicate that such con-300

cerns are valid as individual sites can show very strong deviations in their allele frequencies estimated301

from low-coverage sequencing data. This is due to a combination of effects, including mapping bias302

and sampling artifacts. Allele frequency point estimates from genotype likelihoods tend to be higher303

than true frequencies because most alleles segregate at low frequencies, and thus appear most com-304

monly in heterozygotes. However, genotype likelihood approaches without an allele frequency prior305

will naturally put some weight on individuals being homozygous for the allele, ultimately collectively306

driving up allele frequency estimates. The risk is then that most downstream analyses will treat the307

allele frequency point estimates as face values potentially leading to both false positives and negatives.308

While our new approach to recalibrate genotype likelihoods reduces the number of outlier loci, there309

is still uncertainty in allele frequency estimates from low coverage data. Therefore, results heavily310

relying on allele frequency estimates or genotype calls at single loci from low-coverage sequencing data311

or even ancient DNA data need to be taken with a grain of salt.312

The simulations in this study revealed a modest but significant effect of mapping bias on ancestry313

estimates as the difference between reference genomes never exceeded 5 percent. The differences seen314

in our simulations are likely underestimates of what might occur in empirical studies as real genomes315

are larger and more complex than what was used in the simulations. For instance, we simulated five316
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20 megabase long chromosomes for a 100 megabase genome, while mammalian genomes are one order317

of magnitude larger; the human genome is roughly 3 gigabases and the shortest human chromosome318

alone is ∼45 megabases long. Furthermore, the only added complexity when generating the random319

sequences was a GC content of 41%. Real genomes also experience more complex mutation events320

involving translocations and duplications, which, together with the increased length and the presence321

of repetitive elements, should increase mapping bias in empirical studies. Finally, the range of possible322

demographic histories including the relationships of targets and sources, drift as well as the timing323

and number of gene flow is impossible to explore in a simulation study. The restricted scenarios tested324

in this study should affect the quantitative results but the qualitative interpretation of mapping bias325

impacting ancestry estimates should extend beyond the specific model used in the simulations.326

While the ancestry estimates depended slightly on the reference genome the reads were mapped to,327

they seemed more influenced by the choice of method or software. Methods easily differed by more328

than 10% in their ancestry estimates from the same source data. This highlights that other factors329

and biases play major roles in the performance of these methods. Depending on the method, the type330

of input data and the implementation, they showed different sensitivities to e.g. the amount of missing331

data or linkage. For non-pruned data, qpAdm performed best across all scenarios and did not show332

any method-specific bias in certain ranges of simulated admixture proportions. This supports the333

common practice of using qpAdm in most human ancient DNA studies. However, the requirement of334

data from additional, “right” populations, might not make it applicable to many non-human species.335

Furthermore, qpAdm only works with genotype calls, so it is influenced by mapping bias in similar336

ways as ADMIXTURE and these methods cannot benefit from the newly introduced genotype likelihood337

estimation. We also need to note that we tested qpAdm under almost ideal settings in our simulations338

with left and right populations clearly separated and without gene flow between them. More thorough339

assessments of the performance of qpAdm can be found elsewhere (Harney et al., 2021; Yüncü et al.,340

2023). In our simulations, unsupervised PSD-model approaches (ADMIXTURE, NGSadmix) work as well341

as or even better than supervised PSD-model approaches (ADMIXTURE, fastNGSadmix) in estimating342

the ancestry proportions in the target population. ADMIXTURE and NGSadmix benefit from LD pruning343

while LD pruning increases the method bias for fastNGSadmix and introduces method bias for qpAdm.344

Genotype likelihood-based methods for estimating ancestry proportions are not commonly used in345

human ancient DNA studies (but they are popular as input for imputation pipelines). This may be346

surprising, because genotype-likelihood-based approaches are targeted at low coverage data, exactly as347

seen in ancient DNA studies. However, the definition of “low coverage” differs between fields. While348

most working with modern DNA would understand 2-4X as “low depth”, the standards for ancient349

DNA researchers are usually a lot lower due to limited DNA preservation. Genotype likelihood meth-350

ods perform much better with >1X coverage, an amount of data that is not within reach for most351

ancient DNA samples investigated so far (Mallick et al., 2023). The large body of known, common352

polymorphic sites in human populations allows the use of pseudohaploid calls at those positions in-353

stead. Nonetheless, this study highlights that unsupervised methods employing genotype-likelihoods354

(NGSadmix) can reach similar accuracies as methods such as ADMIXTURE that require (pseudo-haploid)355

genotype calls. Moreover, methods that incorporate genotype likelihoods have the added benefit that356

the modified genotype likelihood estimation approach can be used to reduce the effect of mapping bias.357

Furthermore, if some samples in the dataset have >1X depth, genotype likelihood-based approaches358

will benefit from the additional data and provide more precise estimates of ancestry proportions while359

pseudo-haploid data will not gain any information from more than one read at a position. Finally,360

genotype likelihoods are very flexible and can be adjusted for many other aspects of the data. For361

example, variations of genotype likelihood estimators exist that incorporate the effect of post-mortem362

damage (Hofmanová et al., 2016; Link et al., 2017; Kousathanas et al., 2017) allowing to use of all363

sequence data without filtering for potentially damaged sites or enzymatic repair of the damages in364

the wet lab.365

As the main aim of this study was to show the general impact of mapping bias and introduce a366

modified genotype likelihood, we opted for a comparison of some of the most popular methods with a367
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limited set of settings. This was done in part to limit the computational load of this study. We also368

decided to not set this up as a systematic assessment of different factors influencing mapping bias. The369

effects of fragmentation (Günther and Nettelblad, 2019) and deamination damage (Martiniano et al.,370

2020) on mapping bias have been explored elsewhere. Our results reiterate that mapping bias can371

skew results in studies using low-coverage data as is the case in most ancient DNA studies. Different372

strategies exist for mitigating these effects and we added a modified genotype likelihood approach373

to the population genomic toolkit. Nevertheless, none of these methods will be the ideal solution in374

all cases and they will not always fully remove the potential effect of mapping bias, making proper375

verification and critical presentation of all results crucial.376
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Supplementary Figures782

Figure S1: Differences in allele frequency estimates in the parts of the reference genome attributed to
African ancestry. Boxplots for the differences between default genotype likelihood-based
estimates and corrected genotype likelihood-based estimates, default genotype likelihood-
based estimates and SNP array-based estimates, corrected genotype likelihood-based es-
timates, pseudohaploid (PH) genotype-based and SNP array-based estimates (A) in the
FIN population and (B) in the YRI population. (C) is showing boxplots of the per-site
population differentiation (measured as f2 statistic) for the four allele frequency estimates.
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Figure S2: Differences in allele frequency estimates in the parts of the reference genome attributed to
European ancestry. Boxplots for the differences between default genotype likelihood-based
estimates and corrected genotype likelihood-based estimates, default genotype likelihood-
based estimates and SNP array-based estimates, corrected genotype likelihood-based es-
timates, pseudohaploid (PH) genotype-based and SNP array-based estimates (A) in the
FIN population and (B) in the YRI population. (C) is showing boxplots of the per-site
population differentiation (measured as f2 statistic) for the four allele frequency estimates.

Figure S3: Differences in allele frequency estimates in the parts of the reference genome attributed to
East Asian ancestry. Boxplots for the differences between default genotype likelihood-based
estimates and corrected genotype likelihood-based estimates, default genotype likelihood-
based estimates and SNP array-based estimates, corrected genotype likelihood-based es-
timates, pseudohaploid (PH) genotype-based and SNP array-based estimates (A) in the
FIN population and (B) in the YRI population. (C) is showing boxplots of the per-site
population differentiation (measured as f2 statistic) for the four allele frequency estimates.
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Figure S4: Simulation results for genotype call based methods using t123 = 20000 generations and a
sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture proportions.
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Figure S5: Simulation results for genotype call based methods using t123 = 20000 generations and a
sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture proportions.
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Figure S6: Simulation results for genotype likelihood based methods using t123 = 20000 generations
and a sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture
proportions.
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Figure S7: Simulation results for genotype likelihood based methods using t123 = 20000 generations
and a sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture
proportions.
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Figure S8: Simulation results for genotype call based methods using t123 = 50000 generations and a
sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture proportions.
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Figure S9: Simulation results for genotype likelihood based methods using t123 = 50000 generations
and a sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture
proportions.
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Supplementary Tables783

Table S1: 1000 genomes individuals used for the analysis of empirical data.

individual Population Autosomal sequencing depth
HG00171 FIN 3.12803
HG00190 FIN 3.089
HG00272 FIN 3.61242
HG00277 FIN 3.86275
HG00284 FIN 4.08807
HG00323 FIN 2.80008
HG00330 FIN 13.9648
HG00380 FIN 3.45273
HG00177 FIN 3.43327
HG00189 FIN 3.48314
NA18853 YRI 2.56291
NA18923 YRI 4.42742
NA19197 YRI 4.19443
NA19200 YRI 4.22902
NA19236 YRI 4.21535
NA19248 YRI 4.24979
NA19116 YRI 3.03829
NA19130 YRI 4.97799
NA18520 YRI 3.99207
NA18522 YRI 2.55368

Table S2: Total number and percentage of SNPs with extreme differences (≥ |0.5|) between ”True”
and estimated allele frequencies.

Population True vs default GL True vs. corrected GL True vs. Pseudohaploid
FIN 738 (0.118%) 608 (0.096%) 979 (0.157%)
YRI 829 (0.133%) 674 (0.108%) 947 (0.152%)
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