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Abstract

Control of organ morphology is a fundamental feature of living organisms. There is,

however, observable variation in organ size and shape within a given genotype. Taking

the sepal of Arabidopsis as a model, we investigated whether we can use variability of

gene expression alongside variability of organ morphology to identify gene regulatory

networks potentially involved in organ size and shape determination. We produced a

dataset composed of morphological parameters and genome-wide transcriptome

obtained from 27 individual sepals from wild-type plants with nearly identical genetic

backgrounds, environment, and developmental stage. Sepals exhibited appreciable

variability in both morphology and transcriptome, with response to stimulus genes and

cell-wall related genes displaying high variability in expression. We additionally

identified five modules of co-expressed genes which correlated significantly with

morphology, revealing biologically relevant gene regulatory networks. Interestingly,

cell-wall related genes were overrepresented in two of the top three modules. Overall,

our work highlights the benefit of using coupled variation in gene expression and

phenotype in wild-type plants to shed light on the mechanisms underlying organ size

and shape determination. Although causality between gene expression and sepal

morphology has not been established, our approach opens the way to informed analysis

for mutant characterization and functional studies.



Introduction

Size and shape of organs are very important traits that determine adaptation to a

given environment. Accordingly, numerous studies have addressed the developmental

regulation of size and shape. For instance, screens for mutants with altered organ size

have allowed the identification of mutants with defects in cell size, cell number, or both

(reviewed in Czesnick & Lenhard, 2015). The characterisation of such mutants has

highlighted the contribution of individual genes to the regulation of size or shape.

However, genes are integrated in complex molecular networks that operate in each cell

and drive cellular behavior. As a result, events occurring at the molecular level control

phenomena occurring at a higher scale (Long and Boudaoud, 2019). This contributes to

the difficulty of deciphering the mechanisms underlying morphogenesis. Despite

enormous progress in understanding how gene expression patterns are established

during development (Alvarez-Buylla, et al., 2008; Liu et al., 2020), we still need to

understand how these patterns are related to cellular processes leading to the

development of organs with robust size and shape (e.g. Zhu et al., 2020). In this

context, modules of interacting genes appear as a central layer of biological

organization (Lucas et al., 2011), calling for new approaches to identify such modules.

The association between genotype and phenotype can be assessed in many

different ways. A routinely used approach is based on the characterization of the effects

of a mutation on the phenotype of the organism. However, its main drawback is that,

because genes are part of complex regulatory networks, it may be hard to draw reliable

information from the phenotype of one- or two-gene mutants, especially when studying

complex traits (Chen et al., 2018). In addition, mutations often induce compensation that

increases the difficulty to understand the link between genotype and phenotype

(reviewed in Hisanaga et al., 2015). Regarding the choice of scale, single-cell gene

expression data has enabled the characterization of complex organs with multiple

different cell-types such as the root (Dorrity et al., 2021) and ovules (Hou et al., 2021) in

Arabidopsis. Complementarily, transcriptomic data at the organismal level, such as that

obtained from whole seedlings, has provided very valuable insight regarding variability



in gene expression (Cortijo et al., 2019) highlighting the role of modules of co-expressed

genes (Cortijo et al., 2020). Both of these approaches, however, have their

shortcomings. On the one hand, single-cell RNA sequencing has limited power to detect

lowly expressed genes. On the other hand, transcriptomes obtained from whole

individuals combine different structures, tissues and cell-types. Here, we have chosen

an intermediate scale by studying a whole organ, the sepal, which has relatively few

cell-types.

Recently, the Arabidopsis sepal has emerged as a good system to study organ

morphology (Roeder, 2021) for several reasons: Arabidopsis has a large number of

flowers on each inflorescence; sepals are very accessible for dissection, imaging and

experimentation; and sepals exhibit very reproducible morphology. Here, we use the

sepal of Arabidopsis thaliana to explore wild-type variability in morphology and in gene

expression. We use this variability to identify modules of co-expressed genes to

reconstitute gene regulatory networks (GRNs) associated with sepal morphology. We

have performed high-coverage RNA sequencing to obtain high-quality transcriptomic

data at the organ level, aiming at identifying modules of co-expressed genes which

could be linked to sepal morphology. To identify these modules in wild-type plants, we

have evaluated variation in sepals by obtaining gene expression data and morphology

from 27 wild-type sepals in environmentally controlled conditions and with identical

genetic background. Taking advantage of molecular and phenotypic variation among a

high number of wild-type sepals, we extracted relevant biological information about

cell-wall related genes and organ morphology.

Results

A unique dataset enables the analysis of gene expression and morphology of single

sepals

Our goal was to analyze the variability of both the morphology and the

transcriptome of individual sepals from wild-type plants grown in standard conditions.



On a single inflorescence (flowering stem) of Arabidopsis, flower buds initiate at regular

time intervals in a continuous manner. Each flower bud contains four sepals that are

formed in a defined order, the first one to emerge being called the abaxial sepal (it forms

on the side furthest away from the flower meristem and is also known as the outer

sepal). Previous studies (Hervieux et al., 2016; Hong et al., 2016) have shown that

arrest of sepal growth begins at stage 11 (according to staging of Arabidopsis flower

development described in Smyth et al., 1990). We therefore chose early stage 11 to

collect sepals and to minimize stage heterogeneity. Indeed, early stage 11 is rather

transient, as we rarely find two flowers at this stage in a given inflorescence. We then

collected 30 individual abaxial sepals, each from 30 different secondary inflorescences,

taken from three different Col-0 wild-type plants (10 sepals from each plant), labeled D,

E and F, grown simultaneously in the same standard experimental conditions, and used

them to recover their 3D shape as well as their RNA to perform RNA-Seq analysis

(Figure 1A). Each sepal was imaged under a confocal microscope using

autofluorescence before being frozen in liquid nitrogen for RNA extraction, less than 5

minutes after the dissection. Sepal images were analyzed with in-house python scripts

and using MorphographX (Barbier de Reuille et al., 2015; see Materials and Methods).

Our image analysis pipeline allows for automated, precise and quantitative analysis of

sepal shape compatible with large-scale analysis, which can be used to characterize

new mutants as well as to re-examine known mutants. One advantage of the protocol is

that it exploits the natural autofluorescence of plant tissue and does not require

introducing any fluorescent protein by genetic transformation, like in previous work on

leaves (Biot et al., 2016).

Sepal morphology was characterized by measuring curvilinear length (Length),

curvilinear width (Width), surface area (Area), longitudinal curvature (LongCurv) and

transversal curvature (TransCurv) (Figure 1B). From these measurements, we

additionally calculated the aspect ratio (AspRatio) by dividing Length over Width, and

the Gaussian curvature (GaussCurv) by multiplying LongCurv by TransCurv. The

parameters that we have used here to describe sepal morphology were selected after

considering several parameters and carefully evaluating their reproducibility, in



particular by measuring the same sepal several times (see Materials and Methods).

Other parameters that had originally been measured, such as curvature at the borders,

were excluded because they were not reliable. For this reason, curvature was

measured from the central zone of the sepal (Figure 1B). From our transcriptome

pre-analysis (see Materials and Methods), we removed lowly expressed genes and

restricted the analysis to a set of 14,085 genes with reliable quantification of expression

(Supplementary Table 1). We detected three outliers (all from one plant, plant F) which

were not further analyzed. All results shown hereafter are for 27 sepal samples.

Figure 1: Protocol used for sample collection, data generation and image analysis.
(A) Flower buds at early stage 11 were identified as such when petals (in blue) were longer

than the lateral stamen (outlined by purple dashed lines, not visible on the image) but
shorter than the median stamen (yellow dashed lines). The abaxial sepal was dissected
and put on agar to avoid dehydration. Autofluorescence enabled imaging of the entire
sepal using a confocal microscope with the lowest possible laser power and resolution to
minimize laser exposure. Within less than 5 minutes, the sepal was frozen in liquid
nitrogen. After grinding, RNA was extracted from individual sepals and used for
RNA-Seq.

(B) In order to retrieve precise morphological parameters for each sepal sample, raw images
obtained from the confocal microscope were normalized, smoothed, and segmented into
3D volumes representing sepals, before fixing sepal orientation. From the digital 3D
images, morphological parameters were extracted, namely, length, width, aspect ratio,
area, and transversal, longitudinal and Gaussian curvatures (see Materials and
Methods). Transversal (longitudinal) curvature was measured from the central zone of
the sepal by dividing the total width (length) of the sepal in four equal sections as shown
in the figure, then, by fitting the circumference that best matched the sepal curvature in
the middle two sections and taking the inverse of the radius of said circumference.

Variability in wild-type sepal morphology is mostly explained by variation in area and

aspect ratio

We analyzed the seven morphological parameters mentioned above (Length,

Width, AspRatio, Area, LongCurv, TransCurv and GaussCurv) within plants and across

our 27 sepals (Supplementary Table 2). Analysis of correlations between each pair of

parameters (Figure 2A) shows that Area is the most informative parameter since it is

strongly positively correlated with Length and Width (as expected, even though it is an



independent measurement) and negatively correlated with all three curvature

measurements, particularly with GaussCurv. These correlations are statistically

significant when considering all 27 samples, and also when evaluating plants

independently, despite the expected smaller statistical significance found for plant F due

to its smaller sample size (from exclusion of the three outlier sepals according to the

RNA-Seq data). In general, anticorrelations observed between size and curvature

measurements indicate that larger sepals tend to be less curved in their central region,

a result which was beyond reach with previous 2D descriptions of flattened sepals (e.g.

Hong et al., 2016).

Performing principal component analysis (PCA) on morphological measurements

(Figures 2B & 2C) confirms that despite identical or nearly identical genetic

backgrounds, environment and developmental stages between sepal samples, we do

observe some level of variability among our samples. The first principal component

accounts for 56.5% of the variance and separates Length, Width and Area from

LongCurv, TransCurv and GaussCurv, in agreement with correlations observed in

Figure 2A. The second principal component, explaining 22.3% of the variance, is mostly

dominated by AspRatio, which has no correlation with Area or curvature parameters.

We do not observe any clear clustering by plant although plant F sepals are more

distributed along PC2 than PC1 as opposed to plants D and E. This is caused by

variability in curvature parameters being reduced and aspect ratio being more variable

in plant F sepals compared to the other two plants. From these observations we can

conclude that area and aspect ratio are complementary measurements that describe

sepal shape and size to a large extent. The third principal component explains 14.1% of

the variance and groups all parameters, including Area and curvature parameters, in the

same direction with the strongest contribution coming from Length (Supplementary

Figure 1).



Figure 2. Pairwise comparison and principal component analysis of morphological parameters
(A) Comparison between morphological parameters. The first row shows boxplots for each

parameter and each plant (D in red, E in green, F in blue), with medians represented
with a black line. Colored boxes extend from the first to the third quartile, while whiskers
extend a further 1.5 times the interquartile range. Scatter plots for each pairwise
comparison show each of the samples with its corresponding color. The gray line with
yellow shading corresponds to a linear model adjustment. Pearson correlation
coefficients for each pair are shown for all samples pulled together (in gray) and for each
plant independently (in green, red and blue) with corresponding p-values shown with
asterisks (*** implies p-value < 0.001, ** implies p-value < 0.01, * implies p-value < 0.05,
and . implies p-value < 0.1). The diagonal shows the probability density plot for each
parameter.

(B) Principal component analysis (PCA) for all samples according to their morphological
parameters (D in red, E in green, F in blue), showing the percentage of variance
explained by the first (PC1) and second (PC2) principal components. Ellipses show 95%
confidence ellipses for each set of 2D normally distributed samples for each plant in the
corresponding color.

(C) Loadings for the PCA shown in B depicting the contribution of each morphological
parameter to the first and second principal components in the 2D space.

Genes with highly variable expression are enriched in response to stimulus and cell-wall

functions

Having analyzed the morphological variability present in wild-type sepals, we

compared it with variability in gene expression across samples. We calculated the

squared coefficient of variation (CV2) for each morphological parameter and for each of

our 14,085 genes from the RNA-Seq data across 27 samples. CV2 (the variance divided

by the square of the mean) is a dimensionless quantity that evaluates variability and

that allows for comparison between measurements of different nature. Regarding

morphological parameters, CV2 values for Length, Width and AspRatio are lower than

CV2 values for curvature parameters, with CV2 for Area being between those two groups

(Figure 3A). Although there can potentially be intrinsic differences between size and

curvature parameters, a possible interpretation of this difference is that the size of the

sepal is much more constrained than its curvature. When comparing CV2 between

morphology and gene expression, as depicted in Figure 3A, we find that Length, Width

and AspRatio exhibit less variation (as measured by CV2) than gene expression. This



observation could be a consequence of noise buffering in gene expression when the

latter is translated to phenotype (morphology, in this case).

We then classified genes according to the CV2 values of their expression. Given

the higher variability (both technical and biological) found for lowly expressed genes,

one can correct CV2 to account for this association (Cortijo et al., 2019). However, the

gene expression threshold that we have set has eliminated most lowly expressed genes

from our dataset and essentially, there is no correlation between CV2 values and

average gene expression (Supplementary Figure 2). Hence, we have ordered genes by

the raw CV2 values of their expression (across our 27 samples) and have selected

highly variable genes (HVGs: top 5%, top 5-to-10%, and top 10-to-15%), and lowly

variable genes (LVGs: bottom 5%, bottom 5-to-10%, and bottom 10-to-15%). We

verified that the identification of LVGs and HVGs was not exclusively due to differences

in gene expression between different plants (Supplementary Figures 3 & 4) by

extracting highly and lowly variable genes independently for each plant and comparing

the lists obtained between plants and their overlap with the LVG and HVG lists obtained

considering all 27 sepal samples. Out of the 704 least variable genes identified in each

plant, 89 of them were common when only 2 would be expected if CV2 values were

randomly assigned to each gene. Reassuringly, all of these 89 genes were among the

bottom 5% LVGs identified pooling all 27 sepals together, and only 82 in the bottom 5%

LVGs were not identified as lowly variable for any individual plant. Reproducibility for

HVGs was much more striking. Out of the 704 most variable genes identified in each

plant, 274 of them were common and 272 of them were also in our top 5% HVG set

(pooled sepals). Reproducibility of lowly and highly variable genes across plants also

holds when taking the top and bottom 15% genes (Supplementary Figures 3 & 4).

These results validate the use of CV2 across all 27 sepals and the list of genes within

the HVG and LVG sets.

In order to see if HVGs and LVGs were enriched in particular biological functions,

we searched for enrichment of Gene Ontology (GO) categories in each of these subsets

of genes focusing on high hierarchy GO terms using the PANTHER17.0 online tool (Mi



et at., 2021; see Materials and Methods). The top 5% HVGs show a very different GO

enrichment profile compared to the bottom 5% LVGs (Figure 3B). Top HVGs are

enriched in response to stimulus, to chemical, to stress, to lipid, to wounding and

defense response, whereas bottom LVGs are enriched in cellular and metabolic

processes, vesicle-mediated transport and cellular localization. These findings are

consistent with other studies that have found HVGs to be enriched in genes involved in

response to environment and LVGs enriched in housekeeping functions (Cortijo et al.,

2019; Zheng et al., 2004). An unexpected finding, however, was that within the top

5-to-10% and top 10-to-15% HVGs there is an enrichment in carbohydrate metabolic

process and cell-wall organization or biogenesis genes (Figure 3B).

Figure 3. Variability in gene expression and morphology, and GO enrichment of genes grouped
by variability in their expression

(A) Density profile and boxplots of the squared coefficient of variation (log scale) of gene
expression for each of the 14085 genes (gray) and for seven morphological parameters
(yellow). Points beyond the whiskers in the upper box plot correspond to outliers. Points
over the lower boxplot show the location of CV2 values for each morphological
parameter. Shades within the gene expression density plot indicate the range of CV2

values covered by the selected highly variable and lowly variable gene categories used
in B.

(B) GO enrichment results for each highly variable and lowly variable gene categories as
identified in A. Only top hierarchy GO terms that appear enriched in any of the shown
categories are included (see Methods). Log2 fold change enrichment (left) and -log10
false discovery rate (right) are shown for each category.

Our results point at HVGs being enriched in cell-wall functions according to GO

annotations. However, the latter are known to be incomplete and biased (Timmons et

al., 2015). In order to use an alternative approach to assess cell-wall related gene

expression in sepals, we compiled a non-exhaustive but rather comprehensive list of

cell-wall related genes centered on genes encoding proteins involved in structure,

biosynthesis and cell-wall remodeling from the entire Arabidopsis genome (see

Materials and Methods). We recovered a list of 1,585 genes (Supplementary Table 3)

that we will refer to as our cell-wall related gene (CWRG) list. Among this list, 718 genes



are within our 14,085 sepal gene set. Gene expression CV2 values of these 718 genes

is higher compared to those of the entire gene dataset (Supplementary Figure 5). We

confirmed this through a bootstrapping approach by calculating gene expression CV2

means for 1000 random samples of 718 genes from the entire dataset to have gene

sets of equal size. The gene expression CV2 mean of our CWRG list falls clearly above

the 95% confidence interval of the distribution corresponding to the entire dataset

(Supplementary Figure 5).

Analysis of co-expression reveals gene modules associated with morphology

We then used the Weighted Correlation Network Analysis (WGCNA) package

(Langfelder & Horvath, 2008) to identify modules of co-expressed genes among our 27

samples and evaluated whether some of these modules were significantly associated

with morphology (see Materials and Methods). Clustering samples by their gene

expression profiles reveals that sepals from the same plant do not have a more similar

gene expression profile among them compared to sepals from other plants (Figures 4A

& 4B). Tree reconstruction based on gene expression does not yield a clear pattern

when normalized morphological parameters are plotted against it (Figure 4B),

suggesting a complex link between gene expression and sepal morphology.

Clustering genes in modules according to their expression patterns across

samples and searching for correlations between module eigengene expression

(theoretical gene expression profile that is representative of the module) and

morphological parameters can allow us to detect gene regulatory networks linked to

morphology. We identified 16 modules of co-expressed genes of varying size, ranging

from 63 to 2919 genes (Figure 4C, right panel). The list of genes expressed in sepals

(14,085 genes) along with the module each gene belongs to is provided in

Supplementary Table 4. We found five modules of co-expressed genes whose

eigengene correlated with a significant p-value (p < 0.05) with at least one

morphological parameter (Figure 4C, left panel). The magenta module has the strongest



correlation value (with Width), followed by the cyan module (with Width), the orange

module (with AspRatio), the green module (with Length), and the khaki module (with

GaussCurv). A visual representation of correlations between modules and

morphological parameters is shown in Supplementary Figure 6 by selecting genes with

high module membership and high gene significance (in absolute values) for the top-

correlated morphological parameter of the corresponding module (see Materials and

Methods). Normalized gene expression values for genes with high module membership

and high gene significance for 1/Width, Width, and AspRatio in the magenta, cyan and

orange modules, respectively, correlate well with the parameter values themselves.

Genes with low module membership and gene significance do not correlate as well

among each other or with morphological parameters. The green and khaki modules

correlate with Length and GaussCurv, respectively, although not as strongly as for the

top three modules. These five modules are relatively small in size within the distribution

of module sizes (Figure 4C) which is expected for biologically meaningful subsets of

genes.

Figure 4: Modules of co-expressed genes associated with morphological parameters
(A) PCA on RNA-Seq for 14085 genes across 27 samples belonging to three different plants

(D in red, E in green, F in blue)
(B) Sample dendrogram from gene expression data reconstructed with WGCNA (Langfelder

& Horvath, 2008) and relative magnitude of each morphological parameter measured for
each sample (normalized across samples, with intense red depicting the maximum value
and white, the minimum value).

(C) Module-parameter associations obtained with WGCNA (Langfelder & Horvath, 2008).
Modules are randomly assigned a color and are of different sizes, shown on the right
panel on a floral white-to-violet color scale. Pearson correlation values between module
eigengene expression and morphological parameters (left panel) are shown in black
numbers and in a brown-to-green color scale with corresponding p-values shown with
asterisks (** implies p-value < 0.01, * implies p-value < 0.05, and . implies p-value < 0.1).
Module-parameter pairs with p-values below 0.05 are highlighted with black rectangles
with the corresponding module names in bold.

Modules associated with morphology are enriched in cell-wall related genes



We performed GO enrichment analysis (see Materials and Methods) on all

modules (Supplementary Table 5) using the 14,085 gene set as a background, and

focusing on the top correlated modules. The magenta module showed an enrichment in

cell wall organization or biogenesis and other GO subcategories, such as xylan, cell wall

polysaccharide, cell wall macromolecule and hemicellulose metabolic processes, and

also secondary cell wall biogenesis, among other terms. The orange module also

showed GO enrichment in cell wall organization or biogenesis, but no further GO terms

surpassed the FDR < 0.05 threshold with the 14,085 gene set background. To have

slightly more power to detect relevant GO terms in the orange module, we performed

GO enrichment analysis with the whole genome of Arabidopsis as background (results

for the top modules are shown in Supplementary Table 6). Doing so, we found that

supramolecular fiber organization, cell morphogenesis, and polysaccharide and pectin

biosynthetic processes are enriched in the orange module. The cyan module showed an

enrichment peptide biosynthetic process, thylakoid membrane organization and

chloroplast rRNA processing, as well as translation. In addition, the green module was

enriched in photosynthesis-related GO terms and the khaki module, in response to

oxygen levels. We inspected the module membership and gene significance values for

the genes associated with the most enriched GO term in each of these five modules

(Figure 5). Cell-wall related genes in the magenta module have high module

membership and gene significance values suggesting that correlation between the

magenta module and Width is driven by cell-wall related genes. The cyan and orange

modules also exhibit high module membership for genes associated with peptide

biosynthetic process and cell wall organization or biogenesis, respectively, but not

particularly high gene significance values. A similar situation can be observed for the

green and khaki modules with slightly higher module membership values but average

gene significance values of GO-term associated genes with respect to the rest of the

module.

Figure 5: Relevance of genes associated with GO terms within each module.
(A-E) Scatter plots showing module membership vs. gene significance (in absolute
values and for the top-correlated parameter of the corresponding module) for all genes
found within the magenta (A), cyan (B), orange (C), green (D), and khaki (E) modules.



Highlighted points in each scatter plot correspond to genes associated with specific GO
terms, which were the most enriched in each module: cell wall organization or
biogenesis (A & C), peptide biosynthetic process (B), photosynthesis (D), and response
to oxygen levels (E). Above each scatter plot, density plots for gene significance
absolute values are shown for genes associated or not with the corresponding GO term.
To the right of each scatter plot, density plots for module membership values are shown
for genes associated or not with the corresponding GO term.
(F) Enrichment in genes within our cell-wall related gene list across all modules.
Enrichment values are calculated by dividing the observed number of CWRGs in each
module by the expected number according to module size.

We further tested the conclusion that cell-wall related functions are important in

gene modules that correlate with morphology. First, to assess the relevance of GO term

enrichment results, we searched for members of our curated cell-wall related gene list

across modules and we confirmed that the magenta and orange modules are enriched

in cell-wall related genes (Figure 5F). Second, since response to stimulus and cell wall

were GO terms that appeared enriched in highly variable genes and in modules most

correlated with morphology, we verified that the latter enrichment was not merely a

consequence of the former. We found that even though the khaki and magenta are the

modules with highest CV2 of gene expression, the orange module does not have

particularly high CV2 values and, in fact, both the cyan and green modules have low CV2

values (Supplementary Figure 7A). Furthermore, within the modules themselves, CV2

values do not correlate with either module membership or gene significance

(Supplementary Figures 7B-7F). Altogether, this suggests that a strong correlation with

morphology for cell-wall related gene modules is not an artifact of high variability in

cell-wall related gene expression.

Additionally, cell-wall related genes with a high module membership within the

magenta and orange modules are particularly well correlated between them, as if they

were coregulated (Figure 6 & Supplementary Figure 8). We, hence, proceeded to

reconstruct the GRN of cell-wall related genes within the magenta and orange modules,

shown in Figure 6C & Supplementary Figure 8B, respectively, from their gene

expression levels using GENIE3 (Huynh-Thu et al., 2010). No cell-wall related

transcription factors are found within the orange module. However, within the magenta



module we found two cell-wall related transcription factors with high module

membership: KNAT7 appears as a central node, and NAC007 appears as a connector

between two sub-networks. Both transcription factors are known to be involved in

secondary cell-wall deposition (Nakano et al., 2015; Wang et al., 2020). KNAT7

downstream targets identified by Li et al. (2012) involved in cellulose synthesis in

secondary cell wall (CESA4, CESA7 and CESA8) and xylan biosynthesis

(IRX8/GAUT12 and IRX10) are found in the magenta module and most are strongly

connected in our GRN reconstruction (except for CESA8). NAC007 (also known as

VND4) has been described as playing a role in regulating secondary cell wall formation

(Nakano et al., 2015), although its downstream targets have not been directly

characterized, to our knowledge, by knockout mutants. There is, however, DAP-Seq

data on NAC007 (O’Malley et al., 2016). Using the ConnecTF tool (Brooks et al., 2021),

we observed that out of the 3338 predicted targets of NAC007, 60 are within the

magenta module, when only 30 would be expected if chosen at random across modules

(log2 fold change of 0.98 and p-value of 1.59e-5), confirming that predicted targets of

NAC007 are enriched in the magenta module.

Figure 6. Properties of the magenta module and underlying gene regulatory network.
(A) Module membership against gene significance in absolute value with respect to width for

all genes from the magenta module. Higher module membership value indicates a gene
that is more central in the module, while higher gene significance indicates that the
expression of the gene has a higher correlation with width. Cell-wall genes are
highlighted with blue rings, and genes encoding transcription factors NAC007 and
KNAT7 with red and yellow rings, respectively.

(B) Gene expression values across 27 samples for cell-wall related genes within the
magenta module with module membership above 0.7 (black dotted line in A). Genes
encoding transcription factors NAC007 and KNAT7 are shown in red and yellow,
respectively. The black line corresponds to 1000/Width values for each sample (right
axis), highlighting the negative correlation between gene expression of genes with high
module membership in the magenta module and Width. The right axis has been chosen
for Width measurements to overlap with gene expression values in order to visually
show the negative correlation among them.

(C) Gene regulatory network of all cell-wall related genes in the magenta module (see
Methods/Gene regulatory network reconstruction). NAC007 and KNAT7 are highlighted
in red and yellow, respectively. Node size is proportional to the degree (number of
connections) of each node.



Discussion

Sepals are important organs of angiosperm flowers. As with many other plant

structures, and in particular floral organs, their morphology has been studied from a

broad variety of approaches. We have here explored an approach that combines

acquisition of sepal 3D images, automated extraction of relevant morphological

parameters, exploration of natural variability in morphology and in gene expression

across wild-type sepals, and reconstruction of gene regulatory networks from

correlations between gene expression patterns and morphology. In doing so, we have

found cell-wall related genes as having highly variable expression in wild-type sepals.

Furthermore, gene regulatory networks that correlate with morphology are associated

with cell wall organization and biogenesis.

We consider that our approach is complementary to other approaches, such as

mutant or condition-based, used to detect genes affecting morphology. In a classical

mutant approach, wild-type variability is explored primarily as a means to control for

different mutant conditions across biological replicates. Instead, we here make use of

such variability to extract biologically relevant information. In particular, we use

variability in gene expression and morphology in wild-type plants of the same accession

to unravel gene regulatory networks correlating with organ morphology. To recover

modules of co-expressed genes, we used the WGCNA package (Langfelder & Horvath,

2008) which requires relatively few parameters to adjust. Other tools, such as sPLS (Lê

Cao et al., 2008), also allow for the association of two-block data, like gene expression

and morphology. However, sPLS recovers individual genes instead of modules. Given

the risk of false positives when focusing on small subsets of genes, we considered that

associating morphology to modules of co-expressed genes instead of individual genes

was a more conservative approach.

Based on our morphology analysis, we predicted that area and aspect ratio were

the most informative parameters to describe sepal size and shape. However, our

WGCNA results show width as the most highly correlated parameter. Nevertheless,



when viewing all statistically significant correlations, we observe that modules that

correlate with width also correlate with area (magenta and cyan modules) and that the

third most significantly correlated module (orange) correlates with aspect ratio, which

fits in well with the aforementioned prediction. Looking at enriched GO terms for each

module (Supplementary Table 5) we find that two modules are strongly enriched in

cell-wall related genes (magenta and orange), and another one (cyan), in

chloroplast-related functions and peptide biosynthesis. The cell wall is known to

strengthen the plant body and to play a key role in plant growth. During evolution, plant

cells have acquired the capacity to synthesize walls made of polysaccharides, to

assemble them into a strong fibrous network and to regulate cell-wall expansion during

growth (reviewed in Cosgrove, 2005). The polysaccharides that contribute to the

biomass and to the cell wall are made up of sugars produced in chloroplasts, as end

products of photosynthesis. Finding cell-wall and chloroplast related genes associated

with sepal morphology is therefore consistent with known biological processes.

The contribution of different sets of co-regulated genes to sepal morphology can

be thought of in isolation but connections between modules can also be established,

albeit with a certain degree of speculation. For example, the magenta module correlates

negatively with width, whereas the cyan module correlates positively with width. One

could speculate that genes in the magenta module could have repressive effects on

growth, i.e., secondary cell wall might be involved in the growth repression; and that the

genes in the cyan module could have a contrary effect, i.e., increased peptide

biosynthesis associated with increased growth. Additionally, the fact that the orange

module, also enriched in cell-wall related genes, correlates best with aspect ratio and

not with width like the magenta module, could indicate that different mechanisms are at

work to control size and shape. In fact, the alignment of cortical microtubules is

important for the anisotropy of sepal growth and in determining the aspect ratio of

mature sepals (Hervieux et al., 2016). Interestingly, supramolecular fiber and

cytoskeleton organization genes appear to be overrepresented in the orange module.



Whereas other studies have aimed at reconstructing complete and consistent

gene regulatory networks based on reviews of the literature (e.g. Espinosa-Soto et al.,

2004; La Rota et al., 2011), we have shown that variability of gene expression in wild

type allows the recovery of gene sets that likely function together. An illustration that this

is likely the case, is that we find two transcription factors which are known to dimerize,

BZIP34 and BZIP61, in the orange module. If we focus on the magenta module, which

contains genes related to the cell wall, we find that the top two transcription factors of

this module (ordered by module membership), NAC007 and KNAT7, are known to be

involved in secondary cell-wall deposition and to belong to the same GRN (Wang et al.,

2020). As expected, the identified direct targets of NAC007 (O’Malley et al., 2016) are

enriched in the magenta module. Although DAP-Seq data is not currently available for

KNAT7, some known targets of KNAT7, such as IRX8/GAUT12 and IRX10 (Li et al.,

2012; He et al., 2018), belong to the magenta module, as shown in Figure 6C. In

addition, three CESA genes that have been shown to be upregulated in the knat7

loss-of-function mutant (Li et al., 2012) also belong to the magenta module.

Interestingly, the knat7 mutant has reduced seed size (Renard et al., 2020) and a

repressor version of KNAT7 (supposed to mimic the mutant) induces a dwarf phenotype

(Qin et al., 2020), supporting a link between KNAT7 and growth control. A speculative

mechanism could be that KNAT7 positively regulates secondary cell-wall deposition, as

shown by Wang et al. (2020), which is known to rigidify the tissues (Zhong & Ye, 2015)

and could potentially lead to growth arrest. This is consistent with the magenta module

being negatively correlated with width and area.

Despite having grown our three plants in experimentally controlled conditions and

all of them having grown healthy, we observe that genes involved in response to

stimulus are highly variable among our sepal samples. Although we cannot completely

exclude the possibility that expression of response to stimulus genes was induced by

sepal dissection and imaging, it is unlikely since we managed to keep the duration of

sepal manipulation below five minutes. Our interpretation, in line with other studies

(Araújo et al., 2017, Cortijo et al., 2019), is that this variability is not in itself due to

differences in gene expression as a response to strong external stimuli experienced by



different sepals, but rather, the evidence of underlying basal gene expression variability

allowing the plant to cope with small microenvironmental differences. This basal

variability is thought to have been selected to allow for the possibility of adaptation to

environmental change (Queitsch et al., 2002). We extend this interpretation to cell-wall

related genes, which also show significant variability of expression in sepals.

Considering that reproducibility in morphology should be achieved in part thanks to

underlying regulatory and compensatory mechanisms, our results indicate that cell-wall

related genes could be fundamental for these mechanisms. The possible role of

cell-wall related genes in determining sepal morphology could be applicable to other

organs since cell-wall related genes exhibit high variability across plants also in

Arabidopsis seedlings (Cortijo et al., 2019). In general, our work sheds light on the links

between expression variability, gene regulatory networks, and developmental

robustness and thereby, opens the way to informed functional analysis.

Materials and Methods

Plant Material

Sibling Col-0 plants were grown on soil at 20°C in short day conditions (8 h light/16 h

dark) for 20 days before being transferred to long day conditions at 22°C (16 h light/8 h

darkness). Buds were dissected from independent secondary inflorescences after at

least 10 siliques were formed and were observed under the binocular to identify those at

the beginning of stage 11 (stigmatic papillae formed, petals being longer than the short

stamen but shorter than the long stamen) as described by Smyth et al. (1990). After

dissection, each abaxial sepal was transferred to 0.8% agarose to avoid dehydration,

imaged with a confocal microscope and immediately transferred to liquid nitrogen. The

manipulation and the confocal imaging lasted less than 5 min to minimize the impact of

the manipulation on the transcriptome.

Confocal Imaging



Sepals were examined in a Leica SP5 confocal microscope equipped with a 10X

objective. Samples were imaged using laser 488 nm set up at 20% of the maximum

power and emission from 498 to 735 nm was recovered. The acquisition time was no

more than 100 seconds.

Segmentation and extraction of geometrical parameters

Images are pretreated in the xy plane using a Gaussian filter of sigma of the order of the

z direction voxel size. Then a normalizing procedure is performed on the whole filtered

sample. The linear normalization is constructed in such a way that it superimposes the

background value and the Otsu threshold value of the output images. The sepal’s

contour detection procedure is based on the EdgeDetect Morphology process of the

MorphoGraphX software. First, a rough contour is assessed as the intersection of the

top-down and the bottom-up contours given by Edge Detect. Then a dilation in the xy

direction is performed in order to recover the weakly marked margin cells of the sepals.

The principal directions of the sepal contour are computed, and sepals are placed in the

frame where their center of mass is in the origin (their first principal axis is along the Oy

axis and the second principal axis is along the Ox axis). The length measurements are

done on the longitudinal and transversal principal sections using a python script. The

sepal’s abaxial and adaxial surfaces are separated by watershed segmentation of the

maximal curvature map constructed on the sepal’s whole surface. Then the area of the

abaxial surface is computed as areas of cells on a tissue surface mesh in

MorphoGraphX. The morphological parameters measured are length, width, area,

longitudinal curvature and transversal curvature. Aspect ratio is length divided by width

and Gaussian curvature is the product of longitudinal and transversal curvatures.

In order to validate geometrical measurements, we compared a sample of 10 images

from 10 different sepals with a sample of 10 images of the same sepal that was

manipulated between consecutive shootings. For each of our parameters, same-sepals

variability was verified to be less than 5% of the variability measured across different



sepals. Other parameters that had originally been measured, such as curvature at the

sepal periphery, were excluded because they did not pass this validation criterion.

RNA extraction and sequencing

Each sepal was ground individually using a plastic conical pestle fitting the bottom of the

Eppendorf tube, which was dipped in liquid nitrogen. RNA extraction was subsequently

performed using the Arcturus PicoPure RNA Isolation Kit from Thermo Fisher Scientific

following the manufacturer’s instructions. The libraries were sequenced by the HELIXIO

company on Illumina NextSeq 500 using single read sequencing of 76bp in length.

Quantification of gene expression

Raw reads were pseudo-aligned to cDNA and non-coding RNA sequences from the

TAIR10 Arabidopsis thaliana reference genome (Ensembl release 47) using kallisto

(Bray et al., 2016). Transcript abundances obtained were converted to gene

abundances using tximport (Soneson et al., 2015). Gene counts per million were

obtained using the edgeR package (Robinson et al., 2010) in R (R Core Team, 2021).

Only genes with at least 5 counts per million in at least 14 out of 27 sepal samples were

retained and counts per million were normalized using the a trimmed mean of M-values

(TMM) method in edgeR, resulting in 14,085 gene expression values for 14,085 genes.

We validated our bulk RNA-Seq results by comparing them to RNA-Seq samples

obtained from Arabidopsis seedlings from Cortijo et al. (2019) (Supplementary Figure

9).

WGCNA

Parameters used for WGCNA were: soft-thresholding power for adjacency matrix

reconstruction, 11; minimum module size, 50; module merging threshold, 0.35. Each

gene within a module has a module membership value, calculated as the correlation

between that gene’s expression and the expression of the module eigengene across all

samples. It is representative of the gene’s intramodular connectivity. Each gene also

has a gene significance for any trait, calculated as the correlation between the gene’s

expression values and the morphological parameter values across all samples.



GO enrichment analysis

Gene ontology enrichment analysis was performed with PANTHER17.0 (Mi et al., 2021)

at http://pantherdb.org (last accessed on 2022-03-30) with the following parameters:

Analysis Type: PANTHER Overrepresentation Test (Released 2022-02-02);

Annotation Version and Release Date: GO Ontology database

doi:10.5281/zenodo.5725227 Released 2020-11-01; Test Type: FISHER; Correction:

FDR. Background used was our 14,085 gene dataset (Supplementary Table 5), and

Arabidopsis whole genome (Supplementary Table 6). Top hierarchy GO terms were

obtained by filtering the PANTHER output with the following criteria: only positive

enrichment terms were kept, only top hierarchy terms in each block (as output by

PANTHER) were kept according to total number of genes associated with each GO

term, terms were ordered according to their false discovery rate (FDR) starting from the

smallest rate, only the top five resulting terms were kept for each highly-variable group

(HVG) or lowly-variable group (LVG) group unless a term in the top five in one group

also appeared in another group, in which case it was kept in both. Log2 fold change

values (Supplementary Table 7) and FDR (Supplementary Table 8) were calculated for

each of these terms in each HVG or LVG group.

Cell-wall related gene list

To produce this list, first, we referred to a review describing all the enzymes acting on

the cell wall (Frankova and Fry, 2013) and identified the corresponding genes in the

TAIR Arabidopsis database (www.tair.com). Second, we used the CAZy database

(www.cazy.org) describing families of structurally-related catalytic and

carbohydrate-binding modules of enzymes that degrade, modify or create glycosidic

bonds to find corresponding genes in the Arabidopsis genome. Finally, we manually

enriched the list with proteins known to directly interact with those enzymes in the cell

wall, such as pectin methylesterase inhibitors or interactors of cellulose synthase, also

adding the extensins, which are non-enzymatic proteins highly abundant in the cell wall

and important for its biosynthesis.

http://www.cazy.org/


Gene regulatory networks

Gene regulatory network reconstruction was performed with GENIE3 (Huynh-Thu et al.,

2010) with the Random Forest method and default parameters. The weighted adjacency

matrix obtained was modified by setting all adjacent values above 0.045 to 1 and below

0.045 to 0. The 0.045 threshold was chosen to improve visibility and to include all

cell-wall related genes in the modules. Graph visualization was performed by using the

graph_from_adjacenty_matrix function from the igraph (version 1.2.11) package and the

ggnet2 function in R (R Core Team, 2021). Genes under the GO term “cell wall

organization or biogenesis” (GO:0071554) were extracted from Agrigo2.0 (Tian et al.,

2017) at http://systemsbiology.cpolar.cn/agriGOv2/ (last accessed on 2023-02-08) and

are listed in Supplementary Table 9.

Variability of gene expression

Squared coefficient of variation (CV2) of gene expression values were calculated by

dividing the variance over the square of the mean of gene expression measurements

across 27 sepal samples.

Data, script and code availability
Supplementary Tables 1-9, R scripts (R Core Team, 2021) used for analysis and to

generate main and supplementary figures, as well as all data necessary for analyses

are available at https://doi.org/10.5281/zenodo.8146786. Image analysis code and

pipeline for morphological parameter extraction is available at

http://forge.cbp.ens-lyon.fr/redmine/projects/florivar. Raw sepal image data are available

at https://doi.org/10.5281/zenodo.6559804. Raw RNA-Seq data for 30 sepal samples

are available at the European Nucleotide Archive (ENA) under project PRJEB52917.
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Supplementary Figures

Supplementary Figure 1: Principal component analysis (PCA) for all samples according to their
morphological parameters (plant D in red, E in green, F in blue), showing the percentage of
variance explained by each principal component. Top: PC1 vs. PC3. Bottom: PC2 vs. PC3. Left:
shaded areas show 95% confidence ellipses for each set of 2D normally distributed samples
(plant D in red, E in green, F in blue). Right: loadings for the PCA depicting the contribution of
each morphological parameter to each principal component in the 2D space.

Supplementary Figure 2: Squared coefficient of variation (CV2) against average (μ) of gene
expression (middle plot) across 27 samples for 14,085 genes identifying highly variable genes
(top 5%, top 5-10%, and top 10-15%) and lowly variable genes (bottom 5%, bottom 5-10%, and
bottom 10-15%). Density plots for each CV2 classification are shown on top. Point density in the
2 dimensional space (CV2 against μ) is shown in the bottom plot with the Pearson correlation
coefficient (r) and the corresponding p-value shown highlighting no correlation between the two
variables.

Supplementary Figure 3: Venn diagrams for the bottom 5% lowly variable genes (LVGs) and for
the bottom 15% LVGs according to their gene expression CV2 values. Lowly variable genes
were extracted in two different ways: considering sepals from plants D & E & F independently
(left), and considering variability among 27 sepals from all three plants pooled together (DEF;
right). The left Venn diagrams show the overlap between genes found for each plant
independently. In the top figures, the total number of genes in each circle (red, green and blue)
is 704, corresponding to 5% of our complete 14,085 gene set. Similarly, the bottom figures
contain 2,112 genes in each circle (15% of 14,085). Numbers shown in parentheses are the
expected number of common genes found in each intersection if genes had been chosen
randomly for each plant. The right Venn diagrams show how the LVG set obtained by
considering all 27 sepal samples (DEF) compares to the lowly variable gene sets obtained using
each plant independently. Genes within the grey ellipse also sum up to 704 (top) and 2,112
(bottom). All genes in the intersection between the three plants are also present within the grey
ellipse (89 out of 89, top; 564 out of 564, bottom), whereas only a few genes (82, top; 61,
bottom) are found in the DEF set and not for any plant independently. Circle and ellipse sizes
and intersections are drawn to aid visualization but their sizes are not proportional to the
number of genes found within them. “Holes” in the grey ellipse correspond to genes that belong
to the corresponding area in the left plot, but are not found within our DEF LVG set.

Supplementary Figure 4: Venn diagrams for the top 5% highly variable genes (HVGs) and for
the top 15% HVGs according to their gene expression CV2 values. Highly variable genes were
extracted in two different ways: considering sepals from plants D & E & F independently (left),
and considering variability among 27 sepals from all three plants pooled together (DEF; right).
The left Venn diagrams show the overlap between genes found for each plant independently. In
the top figures, the total number of genes in each circle (red, green and blue) is 704,
corresponding to 5% of our complete 14,085 gene set. Similarly, the bottom figures contain



2,112 genes in each circle (15% of 14,085). Numbers shown in parentheses are the expected
number of common genes found in each intersection if genes had been chosen randomly for
each plant. The right Venn diagrams show how the HVG set obtained by considering all 27
sepal samples (DEF) compares to the highly variable gene sets obtained using each plant
independently. Genes within the grey ellipse also sum up to 704 (top) and 2,112 (bottom).
Almost all genes in the intersection between the three plants are also present within the grey
ellipse (272 out of 274, top; 1066 out of 1073, bottom), whereas only a very small number of
genes (17, top; 12, bottom) are found in the DEF set and not for any plant independently. Circle
and ellipse sizes and intersections are drawn to aid visualization but their sizes are not
proportional to the number of genes found within them. “Holes” in the grey ellipse correspond to
genes that belong to the corresponding area in the left plot, but are not found within our DEF
HVG set.

Supplementary Figure 5: Left: violin plots of gene expression CV2 values for our entire
14,085-gene set (purple) compared to that of the 718 cell-wall related gene (CWRG) list found
in the dataset (blue). Grey box plots show median, 1st and 3rd quartiles of the distributions.
Right: histogram of gene expression CV2 mean values from 1000 random subsets of 718 genes
from the 14,085-gene set. Pink vertical dashed lines delimit the 95% confidence interval of the
distribution. Red asterisk shows the gene expression CV2 mean value of the CWRG list, clearly
above the 95% confidence interval of the random subset gene expression CV2 distribution.

Supplementary Figure 6: Module membership against gene significance for the top correlated
morphological parameter of the corresponding module (left) and normalized (with 0 being the
lowest expression and 1 being the highest expression across samples) log2 gene expression
(right) values for 27 samples, for magenta (A & B), cyan (C), orange (D), green (E) and khaki (F)
modules. Gene expression values are compared with the corresponding morphological
parameter with a scale chosen so as to depict high correlation with gene expression for the
highlighted genes. Only the genes with module membership above (below for B) 0.7 and gene
significance above (below for B) 0.35 for the corresponding parameter, highlighted with filled
circles (left plot), are plotted in the gene expression plot (right plot).

Supplementary Figure 7: (A) Boxplots for CV2 of gene expression values for all genes within
each module. Each color point represents one gene and the black bar in each boxplot
represents the median value across all the genes in each module. (B-F) Scatter plots showing
module membership vs. gene significance (in absolute values and for the top-correlated
parameter of the corresponding module) for all genes found within the magenta (B), cyan (C),
orange (D), green (E), and khaki (F) modules. Circle size is proportional to each gene’s CV2

value. Genes with a different color to the corresponding module name are those associated
with the specific GO terms which were the most enriched in each module: cell wall organization
or biogenesis (B & D), peptide biosynthetic process (C), photosynthesis (E), and response to
oxygen levels (F).

Supplementary Figure 8: (A) Module membership against gene significance in absolute value
with respect to AspRatio for all genes from the orange module are shown in the left plot.
Cell-wall related genes are highlighted with blue rings and their normalized gene expression



values across 27 samples (for those genes with module membership above 0.7) are shown in
the right plot. The black line corresponds to AspRatio values for each sample (right axis). (B)
Gene regulatory network of all cell-wall related genes in the orange module (see Materials and
Methods). Node size is proportional to the degree (number of connections) of each node.

Supplementary Figure 9: Validation of our RNA-Seq data by comparing squared coefficient of
variation (top) and average gene expression (bottom) for our 14,085 genes (in red) with
equivalent data (15,646 genes, in black) for Arabidopsis seedlings from Cortijo et al. (2019).
Results are shown for each ”original dataset” (solid lines) and for genes in “common” (dashed
lines) between both datasets (13,013 genes). Gene expression CV² values are comparable and
have a strong correlation (top right). Mean gene expression values extracted from read counts
show very similar distributions and a strong correlation (bottom right) but higher coverage in our
case.


