1	RAREFAN: <u>A</u> webservice to identify REPINs and RAYTs in bacterial genomes	(Deleted: a
2	Carsten Fortmann-Grote, Julia <u>yon Irmer</u> and Frederic Bertels	(Deleted: Balk
3			Formatted: German Formatted: German
4	Max-Planck-Institute for Evolutionary Biology, Department of Microbial Population Biology		
5			
6			
7	Corresponding author: Frederic Bertels, August-Thienemann-Straße 2, 24306 Plön, Germany,		
8	bertels@evolbio.mpg.de.		
9			
10			
11			
12	Running title: REPIN/RAYT Finder and ANalyzer		
13			
14	Keywords: sequence analysis – mobile genetic elements – bacterial genomes –		
15	Stenotrophomonas maltophilia		
16			

19 Abstract

Compared to eukaryotes, repetitive sequences are rare in bacterial genomes and usually do 20 21 not persist for long. Yet, there is at least one class of persistent prokaryotic mobile genetic 22 elements: REPINs. REPINs are non-autonomous transposable elements replicated by singlecopy transposases called RAYTs. REPIN-RAYT systems are mostly vertically inherited and have 23 persisted in individual bacterial lineages for millions of years. Discovering and analyzing REPIN 24 25 populations and their corresponding RAYT transposases in bacterial species can be rather 26 laborious, hampering progress in understanding REPIN-RAYT biology and evolution. Here we present RAREFAN, a webservice that identifies REPIN populations and their corresponding 27 28 RAYT transposase in a given set of bacterial genomes. We demonstrate RAREFAN's capabilities 29 by analyzing a set of 49 Stenotrophomonas maltophilia genomes, containing nine different REPIN-RAYT systems. We guide the reader through the process of identifying and analyzing 30 REPIN-RAYT systems across S. maltophilia, highlighting erroneous associations between REPIN 31 and RAYTs, and providing solutions on how to find correct associations. RAREFAN enables 32 rapid, large-scale detection of REPINs and RAYTs, and provides insight into the fascinating 33 34 world of intragenomic sequence populations in bacterial genomes. RAREFAN is available at 35 http://rarefan.evolbio.mpg.de. 36

Deleted: provide

Deleted: ...

Introduction

Repetitive sequences in bacteria are rare compared to most eukaryotic genomes. In eukaryotic genomes, repetitive sequences are the result of the activities of persistent parasitic transposable elements. In bacteria, in contrast, parasitic transposable elements cannot persist for long periods of time (Park *et al.* 2021; van Dijk *et al.* 2022). To persist in the gene pool, transposable elements have to constantly infect novel hosts (Sawyer *et al.* 1987; Lawrence *et al.* 1992; Bichsel *et al.* 2010; Rankin *et al.* 2010; Wu *et al.* 2015; Park *et al.* 2021). Yet, there is at least one exception: a class of transposable elements called REPINS.¶

Page Break

Symmet	ric REPINs			
		Usually ^		
P	utative RAYT binding			
	$\rightarrow \leftarrow$			
High se	quence conservation	Low sequence		
REP forward				
Asymme	tric REPINs			
	\rightarrow \leftarrow			
	Deletion			
Figure 1. T REPINs	The structure of symmetric a	and asymmetric		

56 Introduction

- 57 Repetitive sequences in bacteria are rare compared to most eukaryotic genomes. In eukaryotic
- 58 genomes, repetitive sequences are the result of the activities of persistent parasitic transposable
- 59 elements. In bacteria, in contrast, parasitic transposable elements cannot persist for long periods
- 60 of time (Park et al. 2021; van Dijk et al. 2022). To persist in the gene pool, transposable elements
- 61 have to constantly infect novel hosts (Sawyer et al. 1987; Lawrence et al. 1992; Bichsel et al.
- 62 2010; Rankin et al. 2010; Wu et al. 2015; Park et al. 2021). Yet, there is at least one exception: a
- 63 class of transposable elements called REPINs.

64

Symmetric REPINs

Symmetric Rennis	Usually ~100 bp	
Putative RAYT binding		Putative RAYT binding
_ → ←		→ ←
High sequence conservation	Low sequence conservation	High sequence conservation
REP forward		REP reverse
Asymmetric REPINs		
> •		→ ←
Deletion		Insertion

65

66

Figure 1. The structure of symmetric and asymmetric REPINs. A typical REPIN consists of two highly conserved regions at the 5' and 3' end (white), separated by a spacer region of lower sequence conservation (grey). The entire REPIN is an imperfect palindrome (blue arrows), which means it can form hairpin structures in single stranded DNA or RNA. Each 5' and 3' region contains a nested imperfect palindrome, which is referred to as REP (repetitive extragenic palindromic) sequence and has first been described in *Escherichia coli* (Higgins *et al.* 1982). REPINs can be either symmetric or asymmetric. Asymmetric REPINs have a deletion and a corresponding insertion in the highly conserved 5' or 3' end, which leads to "bubbles" in the hairpin structure. REPINs in for example *Pseudomonas fluorescens* SBW25 are symmetric while REPINs in *E. coli* are asymmetric, Asymmetric REPINs make analyses with RAREFAN more challenging. Figure adapted from (Bertels, Rainey 2023), which is licensed under CC BY 4.0.

- 67 REP (repetitive extragenic palindromic (Higgins et al. 1982)) sequences that can be present
- 68 hundreds of times per genome (Bertels, Rainey 2011a). Most REPINs are symmetric where the 5'
- 69 REP sequences are identical to the 3' REP sequences, with the occasional substitution (Bertels,

Deleted: of the REPIN Deleted: a Deleted: , which makes Deleted: (Bertels, Rainey 2022). Deleted: 1

Deleted: is

72	Rainey 2011a; b). However, there are also asymmetric REPINs where the 5' REP sequence differs	Deleted
73	from the 3' REP sequence by a point deletion or insertion (Bertels, Rainey 2011a, 2023), which	the 5' R point de
74	makes the analysis and detection of REPINs significantly more difficult (e.g., Escherichia coli	which n difficult
75	REPINs). Isolated REP sequences, sometimes referred to as REP singlets, can also be found in the	sequent These s
76	genome. These sequences are decaying remnants of REPINs that are no longer mobile (Bertels,	not mol
77	Rainey 2011a). REPINs are non-autonomous mobile genetic elements, which means they require	
78	a RAYT (REP Associated tYrosine Transposase) transposase gene (also referred to as $tnpA_{REP}$) to	
79	replicate inside the genome (Nunvar et al. 2010; Bertels, Rainey 2011a; Ton-Hoang et al. 2012).	
80		
81	Within a genome, each REPIN population is usually only associated with a single RAYT gene.	Deleted
82	Hence, RAYT genes occur only in single copies per genome and do not copy themselves, unlike	
83	for example insertion sequences where often multiple identical sequences are present inside the	
84	genome. Unlike insertion sequences RAYT genes are <u>almost exclusively</u> inherited vertically,	Deleted
85	meaning they are host-beneficial transposases that have been coopted by the host Bertels,	Deleted
86	Gallie, et al. 2017; Bertels, Rainey 2023). The fact that REPINs and their corresponding RAYT genes	Deleted
87	are confined to a single bacterial lineage makes them unique, in comparison to all other parasitic	Deleted
88	mobile genetic elements in bacterial genomes (Bertels, Rainey 2023).	Deleted
89		Field C
90	Of a total of five different RAYT families, there are only two RAYT families that are associated	
91	with repetitive sequences such as REPIN or REP sequences: Group 2 and Group 3 RAYTs (Bertels,	Deleted
92	Gallie, et al. 2017). Group 2 RAYTs are present in most Enterobacteria and usually occur only once	
93	per genome associated with a single REPIN population. In contrast, Group 3 RAYTs are found in	
94	most Pseudomonas species and are usually present in multiple divergent copies per genome,	
95	each copy associated with a specific REPIN population (Bertels, Gallie, et al. 2017).	
96		
97	REPINs and their corresponding RAYT genes occur exclusively in bacterial genomes and are	

- absent in eukaryotic or archaeal genomes (Bertels, Gallie, et al. 2017; Bertels, Rainey 2023). 98
- Within bacterial genomes REPINs and RAYTs have been evolving in single bacterial lineages for 99

I: However, there are also asymmetric REPINs where EP sequence differs from the 3' REP sequence by a eletion or insertion (Bertels, Rainey 2011a, 2022), nakes the analysis and detection significantly more (e.g., Escherichia coli REPINs). Isolated REP ces, REP singlets can also be found in the genome. equences are decaying remnants of REPINs that are bile anymore...

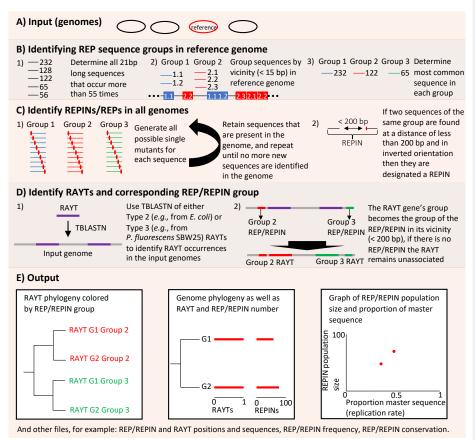
l: to

Rainey 2022).

: REPINs

Deleted: (Bertels, Gallie, et al. 2017; Bertels, Rainey 2022).

116	millions of years (Bertels, Gallie, et al. 2017). The long term persistence of REPINs in single	*****	Deleted: maybe even for a billion
117	bacterial lineages can also be observed when analyzing REPIN populations (Bertels, Gokhale, et		Field Code Changed
118 (al. 2017; Bertels, Rainey <mark>2023</mark>).		Deleted: 2022
119			
120	Parasitic insertion sequences usually occur in identical copies in bacterial genomes, reflecting the		
121	fact that insertion sequences persist only briefly before they are eradicated from the genome or		Deleted: in the genome
122	kill their host <u>(Park et al. 2021)</u> . REPINs in contrast are only conserved at the ends of the sequence	*****	Deleted: (Park et al. 2021)
123	(presumably due to selection for function), the rest of the sequence is highly variable and only		
124 1	the hairpin structure is conserved (Bertels, Rainey 2011a). The sequence variability of REPINs	*****	Deleted: The sequence variability of REPINs within the same
125	within the same genome reflects their long-term persistence in single bacterial lineages (Bertels,		genome reflects their long-term persistence in single bacterial lineages (Bertels, Rainey 2022).
126	Rainey 2023). REPINs cannot simply reinfect another bacterial lineage since they rely for mobility		
127 (on their corresponding RAYT, which itself is immobile.		
128			
129	RAYTs and REPINs are distinct from typical parasitic insertion sequences, yet we know very little		
	about their evolution or biology. Currently, it is completely unclear what kind of beneficial		
	function maintains REPINs and RAYTs as well as their association with each other. The reason for		Deleted: for millions of years in the genome.
	our lack of knowledge is not because REPINs and RAYTs are rare. They are ubiquitously found in		
	many important and well-studied model bacteria such as Enterobacteria, Pseudomonads,		
	Neisseriads, and Xanthomonads. Microbial molecular biologists presumably encounter REPINs		Deleted: ,
	quite frequently. However, connecting the presence or absence of REPINs/RAYTs with		
	phenotypes is difficult if we do not know when it is a REPIN that is present close to a gene of		
	interest or a different type or repeat sequence. Even if the scientist knows about the presence of		
	a REPIN, it is also important to know whether a corresponding RAYT is present. (Bertels, Rainey		Deleted: probably
		\leq	Deleted: , since the function of REPINs largely depends on
139 🏅	<u>2023</u>).		the function of the presence of a corresponding RAYT gene
140			Field Code Changed Deleted: 2022
141	The identification of REPIN populations and their corresponding RAYTs can be rather		Deleted: Yet, the
142 0	cumbersome if done from scratch. This is particularly true if the microbial molecular biologist is		
143	not aware of all the details of REPIN and RAYT biology. Identifying REPINs starts with an analysis		Deleted: ins and outs


159	of short repetitive sequences in a genome. If there are excessively abundant short sequences	(Deleted: the
160	present in the genome, the distribution of these sequences is then analyzed, If these sequences	(Deleted: nex
161	are exclusively identical tandem repeats without sequence variation, and present in only one or		Deleted: they
162	two loci in the genome, then these sequences are probably part of a CRISPR array and not REPINs.		
163	If the sequences are distributed across the genome, highly diverse and often present as inverted		
164	repeats then it is likely that the repeats are indeed REPINs.		
165			
166	Here, we present RAREFAN (RAYT/REPIN Finder and Analyzer), a webservice that automates the		
167	identification of REPINs and their corresponding RAYTs. RAREFAN is publicly accessible at		
168	http://rarefan.evolbio.mpg.de and identifies REPIN populations and RAYTs inside a set of		
169	bacterial genomes. RAREFAN also generates graphs to visualize the population dynamics of		
170	REPINs, and assigns RAYT genes to their corresponding REPIN groups. Here we will demonstrate		
171	RAREFAN's functionality by analyzing REPIN-RAYT systems in the bacterial species		

172

Stenotrophomonas maltophilia.

Deleted: next	
Deleted: they	

Formatted: English (US)

Figure 2. RAREFAN workflow. (a) By default RAREFAN requires the user to supply input sequences containing RAYTs and REPINs. These are fully sequenced and complete genomes. (b) RAREFAN then identifies seed sequence groups (potential REP sequences) in the reference genome by first isolating all 21 bp (adjustable parameter) long sequences that occur more than 55 times (adjustable parameter) in the reference genome. It is likely that a large number of these sequences belong to the same REPIN sequence type since the conserved part of REPINs is longer than <u>21 bp</u>. Hence, we grouped all sequences together that occur within 15 bp (adjustable parameter) of each other anywhere in the genome. All further analyses are performed only with the most common sequence in each sequence group. This sequence will be called the seed sequence. (c) The occurrences of the seed and mutated seed sequences are identified in all submitted genomes. If a mutated seed sequence is identified in a genome, then all single mutants of that seed sequence are searched recursively in the same genome. All identified sequences that occur within 130 bp in inverted orientation of each other are designated REPINs. All other identified seed sequences and mutated seed sequences are REP singlets. (d) TBLASTN is used to

Deleted: 20bp

Deleted: For example, if 'sequence 1' occurs 55 times and 'sequence 2' occurs 42 times then only one of these occurrences of 'sequence 1' needs to be within 15 bp of 'sequence 2' in order to be sorted into the same sequence group...

identify RAYT homologs (e-Value < 1e-30, adjustable parameter) of either *E. coli* (Group 2 RAYT) or from *P. fluorescens* SBW25 (Group 3 RAYT) across all submitted genomes. If a RAYT homolog is in the vicinity (default < 200 bp, adjustable parameter) of a previously identified REPIN or REP singlet, then this RAYT is designated as associated with this REPIN group. (e) The first graph contains a RAYT phylogeny computed from a nucleotide alignment of all identified RAYT genes. The RAYT phylogeny indicates what RAYTs are associated with what REPIN populations (largest sequence cluster calculated with MCL) via colour coding. In a second graph the abundance of each REPIN population and RAYT copy number are displayed on a genome phylogeny. In the last graph REPIN population sizes are plotted in relation to the proportion of master sequences. Master sequences are the most abundant REPIN in each population. RAREFAN also generates various files containing, for example, REP, REPIN, or RAYT sequences and their positions in the query genomes.

Deleted: Pseudomonas

Deleted: The alignment is calculated with MUSCLE (Edgar 2004) and a phylogeny with PHYML (Guindon *et al.* 2010).

Deleted: If no genome phylogeny is supplied RAREFAN calculates a whole genome phylogeny of the submitted genomes using andi (Haubold *et al.* 2015).

Deleted: The REPIN population is the largest sequence cluster that is formed by REPIN sequences (REP sequences are excluded). The largest sequence cluster is identified by applying MCL with an inflation parameter of 1.2 to a sequence matrix where only sequences are connected that differ in exactly one position (Van Dongen 2000).

Formatted: Font: +Body (Calibri), Bold

Deleted: ¶

Moved (insertion) [1]

176 Methods

- 177 *Identification of REPs and REPINs*
- 178 The algorithm to determine REP sequence groups has been described in previous papers and is
- 179 now slightly improved (Bertels, Rainey 2011a, 2023; Bertels, Gokhale, et al. 2017). The main
- 180 difference between the implementations is that RAREFAN automatically links REPs/REPIN
- 181 populations to RAYT genes, which was not possible previously.
- 182 The algorithm starts by extracting all N bp (21 bp by default) long seed sequences that occur
- 183 more than M times (55 by default) from the reference genome (Figure 2B). All sequences
- 184 occurring within the reference genome at least once within 15 bp of each other are then grouped
- 185 together into n REP sequence groups (numbered 0-[n-1]), The most common sequence in each
- 186 group, named REP seed sequence, is used for further analyses in each input genome.
- 187 In the next step all possible point mutants of the seed sequences are generated and searched for
- 188 in the genome (Figure 2C). If a sequence is found in the genome, then all possible point mutants
- are generated for this sequence as well and searched against the genome and so on until no more
- 190 sequences can be identified. Once all sequences related to the seed sequence are found,
- 191 RAREFAN determines whether the sequences form REPINs. Two sequences form a REPIN when
- 192 <u>they are located within 130 bp of each other in inverted orientation.</u>
- 193 REP and REPIN sequences of the same type form REPIN populations. A REPIN population is
- 194 defined as the largest coherent sequence cluster. To identify the largest sequence cluster MCL is
- 195 applied to a network of REP/REPIN sequences where all sequences that differ by exactly one

Moved (insertion) [2]

196	nucleotide are connected using an inflation parameter of 1.2 (Van Dongen 2000), The clustering	Moved (insertion) [3]
197	results are stored in a file ending in .mcl. The sequences of the largest REPIN population	
198	(excluding REP singlets) are stored in a file ending in largestCluster.nodes. The largest	Moved (insertion) [4]
199	REPIN populations are shown in the REPIN population plot and the master sequence correlation	
200	plot (Figure 4).	
201	Identification of RAYTs	Moved (insertion) [5]
202	RAYTs are identified using TBLASTN (Camacho et al. 2009) with either a protein sequence	
203	provided by the user, a Group 2 RAYT from E. coli (yafM, Uniprot accession Q47152) or a Group	
204	3 RAYT from P. fluorescens SBW25 (yafM, Uniprot accession C3JZZ6). The presence of RAYTs in	
205	the vicinity (default maximum of 200 bp) of a particular REPIN can be used to establish the	
206	association between the RAYT gene and a REPIN group (Figure 2D). If a REP sequence or a REPIN	
207	of a particular group occur within 200 bp (by default) of a RAYT gene then the RAYT gene is linked	
208	to the REP/REPIN group. REP/REPIN associations are stored in the file	
209	<pre>repin_rayt_association.txt. REPIN or REP sequences are almost always present in the</pre>	
210	extragenic spaces of the RAYT and this linkage is consistent across the RAYT phylogeny (as shown	
211	in Figure 5). However, what causes the REP/REPIN group to be linked with the RAYT gene is	
212	unclear.	
213	Implementation	
214	RAREFAN is a modular webservice. It consists of a web frontend written in the Python	Deleted: python
215	programming language (Van Rossum, Drake Jr 1995) using the Flask framework (Grinberg 2018),	Deleted: flask
216	a Java (Arnold et al. 2005) backend for genomic sequence analysis and an R (R Core Team 2016)	Deleted: java
217	Shiny app (RStudio, Inc 2013) for data visualization. The software is developed and tested on the	Deleted: shiny
218	Debian GNU/Linux operating system (Kleinmann et al. 2021). All components are released under	
219	the MIT opensource license (Initiative 2021) and can be obtained from our public GitHub	
220	repository at https://github.com/mpievolbio-scicomp/rarefan .	
221	The public RAREFAN instance at <u>http://rarefan.evolbio.mpg.de</u> runs on a virtual cloud server with	
222	four single-threaded CPUs and 16GB of shared memory provided and maintained by the	Deleted: 4

228	Gesellschaft für Wissenschaftliche Datenverarbeitung Göttingen (GWDG) and running the Debian	
229	GNU/Linux Operating System (Kleinmann <i>et al</i> . 2021).	
230	The Java backend drives the sequence analysis. It makes system calls to TBLASTN (Altschul et al.	Deleted: java
231	1990) to identify RAYT homologs and to MCL (Van Dongen 2000) for clustering REPIN sequences	
232	in order to determine REPIN populations.	
233	Jobs submitted through the web server are queued and executed as soon as the required	
234	resources become available. Users are informed about the status of their jobs. After job	
235	completion, the user can trigger the R. <mark>Shiny</mark> app to visualize the results.	Deleted: shiny
236	The Java backend can also be run locally via the command line interface (available for download	Deleted: java
237	at https://github.com/mpievolbio-scicomp/rarefan/releases).	
238	Usage of the webservice	
239	The front page of our webservice allows users to upload their bacterial genomes in FASTA (.fas)	
240	format (Figure 2A). Optionally, users may also provide RAYT protein FASTA sequences (.faa) or	
241	phylogenies in NEWICK (.nwk) format. After successful completion of the upload process, the	
242	user fills out a web form to specify the parameters of the algorithm:	
243	Reference sequence: Which of the uploaded genome sequences will be designated as	
244	reference genome (see below for explanations). Defaults to the first uploaded filename	
245	in alphabetical order.	
246	• Query RAYT: The RAYT gene that is used to identify homologous RAYTs in the query	
247	genomes. If the user does not provide a protein sequence file then the user can choose	
248	one of two RAYT sequences (one from Group 2 and one from Group 3 RAYTs (Bertels,	
249	<u>Gallie, et al. 2017)) as RAYT query.</u>	
250	• Tree file: A phylogenetic tree of the reference genomes that can be provided by the user,	
251	otherwise the tree will be calculated using andi (Haubold et al. 2015).	
252	• Minimum seed sequence frequency: Lower limit on seed sequence frequency in the	
253	reference genome to be considered as a REP candidate. Default is 55.	

257	 Condiservence length. The condiservence length (in base pairs) is used to identify DEDIN 		
257	• Seed sequence length: The seed sequence length (in base pairs) is used to identify REPIN	/	Deleted: Association distance
258	candidates from the input genomes. Default is 21 bp.		Moved up [1]: <#>Identification of REPs and REPINs¶
259	• Distance group seeds: The maximum distance between a single occurrence of short		Noved up [2]: <#> The most common sequence in each group, named REP seed sequence, is used for further analyses in each input genome.¶
260 261	repetitive sequences to still be sorted into the same sequence group.		In the next step all possible point mutants of the seed sequences are generated and searched for in the genome (Figure 2C).
261	 <u>REPIN-RAYT association distance</u>: The maximum distance at which a REP sequence can be / located from a RAYT gene to be linked to that RAYT gene. <u>Default is 200 bp.</u> 	***********************	Moved up [3]: <#> The clustering results are stored in a file ending in .mcl. The sequences of the largest REPIN population (excluding REP singlets) are
263	 e-value cut-off: Alignment e-value cut-off for identifying RAYT homologs with TBLASTN. Default is 1e-30. 		Moved up [4]: <#>The largest REPIN populations are shown in the REPIN population plot and the master sequence correlation plot (Figure 4).¶
264	Default is 1e-30.		Moved up [5]: <#>Identification of RAYTs¶
265	Analyse REPINs: Ticked REPINs will be analysed (two inverted REP sequences found at a		RAYTs are identified using TBLASTN (Camacho <i>et al.</i> 2009) with either a protein sequence provided by the user, a Group
266	distance of less than 130 bp), if not ticked only short repetitive 21 bp long sequence will		2 RAYT from <i>E. coli</i> (yafM, Uniprot accession Q47152) or a Group 3 RAYT from <i>P. fluorescens</i> SBW25 (yafM, Uniprot
267	be analysed.		accession C3JZZ6). The presence of RAYTs in the vicinity Deleted: <#>The algorithm to determine REP sequence
268	• User email (optional): If provided, then the user will be notified by email upon run		groups has been described in previous papers and is slightly improved (Bertels, Rainey 2011a, 2022; Bertels, Gokhale, <i>et</i>
269	completion.		al. 2017). In our current implementation REPs/REPIN populations are now automatically linked to RAYT genes. \P
270	The job is then ready for submission to the job queue. Upon job completion, links to browse and		First, all N bp (21 bp by default) long seed sequences that occur more than M times (55 by default) are extracted from
271	to download the results, as well as a link to a visualization dashboard are provided. If a job runs		the reference genome. N and M are the seed sequence length and minimum seed sequence frequency, respectively
272	for a long time then users may also come back to RAREFAN at a later time, query their job status		(Figure 2B). All sequences occurring within the reference genome at least once within 15 bp of each other are then
273	and eventually retrieve their results by entering the run ID into the search field at		grouped together into n REP sequence groups (numbered 0- (n-1)).
274	http://rarefan.evolbio.mpg.de/results. Relevant links and the run ID are communicated either on		Deleted: <#>If a sequence is found in the genome, then all possible point mutations are generated for this sequence as
275	the status site or by email if the user provided their email address during run configuration. Runs		well and so on until no more sequences can be identified. If two sequences are found within 130 bp of each other in
276	are automatically deleted from the server after six months.		inverted orientation, then these are designated REPINs. ¶ Among all identified REP and REPIN sequences REPIN
277	Visualizations	(populations can be isolated. REPIN populations are determined by applying MCL using an inflation parameter of
278	For each REPIN-RAYT group summary plots are generated. These include plots showing the RAYT		 2 (Van Dongen 2000) to a network of REP/REPIN sequences where all sequences that differ by exactly one nucleotide are connected.
279	phylogeny (calculated from a nucleotide alignment using MUSCLE (Edgar 2004) and PHYML		Deleted: <#>isolated in a file ending in
280	(Guindon et al. 2010) to generate a phylogeny), REPIN population sizes in relation to the genome		largestCluster.nodes.
281	phylogeny (provided by the user or if not provided calculated by andi (Haubold et al. 2015)) as		Deleted: <#>¶

well as the proportion of master sequences (most common REPIN in a REPIN population) in

relation to REPIN population size (Figure 2E).

282

283

Deleted: <#>The presence of RAYTs in the vicinity (default 200 bp) of a particular REPIN can be used to establish the association between the RAYT gene and a REPIN group (Figure 2D). All positions of all REPINs and REP sequences of a REPIN group are checked whether they occur within 200 bp (by default) of a RAYT gene. If so then the RAYT gene is [1]

345 Other outputs

Identified REPINs, REP singlets as well as RAYTs are written to FASTA formatted sequence files 346 347 and to tab formatted annotation files that can be read with the Artemis genome browser (Rutherford et al. 2000). The REPIN-RAYT associations as well as the number of RAYT copies per 348 349 genome are written to tabular data files. A detailed description of all output files is provided in the manual (http://rarefan.evolbio.mpg.de/manual) and in the file "readme.md" in the output 350

351 directory.

352 Sequence analysis and annotation

opportunistic pathogen S. maltophilia.

353 For verification of RAREFAN results, REPIN-RAYT-systems were analysed in their corresponding 354 genomes using Geneious Prime version 2022.2.2 (Kearse et al. 2012). Nucleotide sequences and 355 positions of REP singlets, REPINs, and RAYTs were extracted from output files generated by 356 RAREFAN and mapped in the relevant S. maltophilia genome. Complete RAREFAN data used for 357 analysis can be accessed by using the run IDs listed in Table 1.

358 359

360 361

368

Table 1. RAREFAN IDs linking to the raw data of the presented analyses.

Run ID	Reference genome	Formatted: Left
1a8l7wu	S. maltophilia Sm53	Formatted Table
mknhxpv8	S. maltophilia AA1	Formatted: Left
pgfmaxx5	S. maltophilia FDAARGO 649	Formatted: Left
	, =	Formatted: Left
<u>yy72i755</u>	S. maltophilia AB550	Formatted: Left
<u>78eu9zl0</u>	S. maltophilia ISMMS3	 Formatted: Left

362 Results

RAREFAN can identify REPINs and their corresponding RAYTs in a set of fully sequenced bacterial 363

Associated data can accessed by entering the run ID at http://rarefan.evolbio.mpg.de/results.

364 genomes. The RAREFAN algorithm has been used in previous analyses to identify and

365 characterize REPINs and RAYTs in Pseudomonads (Bertels, Rainey 2011a, 2023), Neisseriads

[Bertels, Rainey 2023), and Enterobacteria (Bertels, Gallie, et al. 2017; Park et al. 2021). To 366

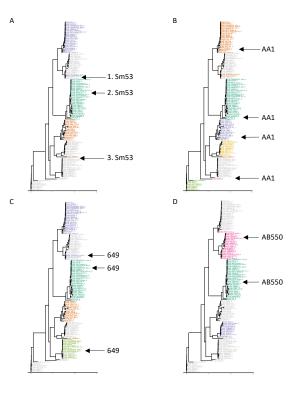
demonstrate RAREFAN's capabilities, we are presenting an analysis of 49 strains belonging to the 367

Deleted: (Bertels, Rainey 2011a, 2022)

Deleted: 1

Deleted: (Bertels, Rainey 2022), and Enterobacteria (Bertels, Gallie, et al. 2017; Park et al. 2021)

373 *S. maltophilia* strains contain Group 3 RAYTs, which are also commonly found in plant-associated


374 Pseudomonas species such as P. fluorescens or P. syringae (Bertels, Rainey 2011a, 2023). Similar

to Group 3 RAYTs in other species, S. maltophilia contains multiple REPIN-RAYT systems per

376 genome. Group 2 RAYTs, in contrast, tend to contain only one REPIN-RAYT system per genome

377 (Bertels, Rainey 2023).

378

379

Figure 3. Phylogenetic trees built from RAYT genes extracted from *S. maltophilia* genomes. RAYT genes are coloured <u>by RAREFAN</u> according to their association with REPIN populations in the reference genome. If a REPIN population of a query genome is not present in the reference genome, then the REPIN population cannot be identified in the query genome and the corresponding RAYT gene cannot be linked and is coloured in grey. The four panels **A-D** show phylogenies for four different reference strains. *S. maltophilia* strains Sm53, AA1, 649 and AB550 were used in panels **A** to **D**, respectively. Locations of a reference strain's RAYT genes in the tree are indicated by arrows. An association between almost all RAYTs and REPIN populations could Deleted: S. maltophilia strains contain Group 3 RAYTs, which are also commonly found in plant-associated *Pseudomonas* species such as *P. fluorescens* or *P. syringae* (Bertels, Rainey 2011a, 2022). Similar to Group 3 RAYTs in other species, *S. maltophilia* contains multiple REPIN-RAYT systems per genome. Group 2 RAYTs, in contrast, contain only ever one REPIN-RAYT system per genome (Bertels, Rainey 2022).¶

(associated with a REPIN group) in at least one of the trees. The three numbered RAYT genes from the Sm53 RAREFAN run are referenced in the text. 387 Nine different REPIN-RAYT systems in S. maltophilia 388 REPIN-RAYT systems in S. maltophilia are surprisingly diverse compared to other species. For 389 example, Pseudomonas chlororaphis contains three separate REPIN populations that are present 390 in all P. chlororaphis strains, each associated with its cognate RAYT gene (Bertels, Rainey 2023). 391 S. maltophilia, in contrast, contains only one REPIN-RAYT system that is present across almost 392 the entire species (green clade in Figure 3), and at least eight REPIN-RAYT systems that are 393 present in subsets of strains (nine clades in Figure 5). 394 The patchy presence-absence pattern of REPIN-RAYT systems in S. maltophilia, makes the dataset 395 quite challenging to analyse. If a REPIN population is not present in the reference strain then 396 RAREFAN will not be able to detect it in any other strain. Yet, it is possible to detect RAYT genes 397 in all strains of a species independent of the reference strain selection. RAYT genes that are not 398 associated with a REPIN population are displayed in grey (Figure 3A). While these RAYT genes are 399 not associated with REPIN populations detected in the reference strain, they might still be 400 associated with a yet unidentified REPIN type present in the genome the unassociated RAYT gene 401 is located in. 402 In order to identify all REPIN populations across a species, multiple RAREFAN runs with different 403 reference strains should be performed. The RAREFAN web interface supports re-launching a 404 given job with modified parameters. To identify as many different REPIN-RAYT systems as 405 possible in each subsequent run the reference should be set to a genome that contains RAYTs 406 that were not associated with a REPIN population previously (i.e., genomes containing grey RAYTs 407 in Figure 3). However, this strategy may also fail when the REPIN population size falls below the 408 RAREFAN seed sequence frequency threshold. In that case reducing the frequency threshold will 409 be more productive. 410 For example, S. maltophilia Sm53 contains three RAYTs only one of which is associated with a

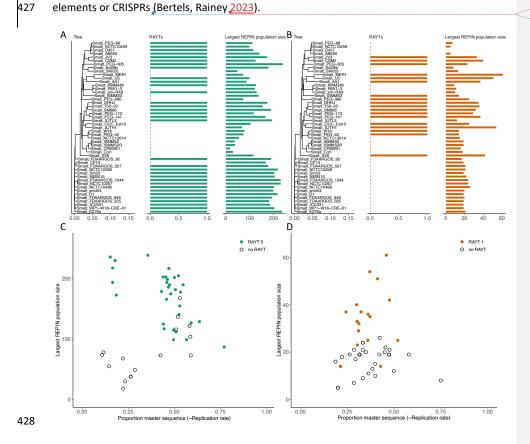
411 REPIN population (RAYT genes indicated in Figure 3A). However, the remaining two RAYTs are

indeed associated with a REPIN population, but these REPIN populations are too small to be 412

Deleted: to

Deleted: (Bertels, Rainey 2022).

be made by using four different reference genomes. Most of the RAYT genes are coloured


Deleted: we suggest to perform

Deleted: to

Deleted: to

Deleted: ¶

418 detected in S. maltophilia Sm53 (the seed sequence frequency threshold is set to 55 by default). 419 In other S. maltophilia strains the REPIN populations are large enough to exceed the threshold. 420 For example, if S. maltophilia AB550 is set as reference, RAYT number 1 from Sm53 (Figure 3A) is associated with the pink REPIN population (Figure 3D). If S. maltophilia 649 is set as reference 421 422 RAYT number 3 from Sm53 (Figure 3A) is associated with the light green REPIN population (Figure 423 3C). RAYTs from the bottom clade are only associated with REPIN populations when S. maltophilia AA1 is chosen as reference (Figure 3B). While lower thresholds can guarantee that all REPINs will 424 425 be identified in the genome, the number of sequence groups that are not REPINs quickly 426 explodes. This is especially true for genomes that contain large numbers of mobile genetic

Deleted: Especially

Deleted: 2022 Field Code Changed

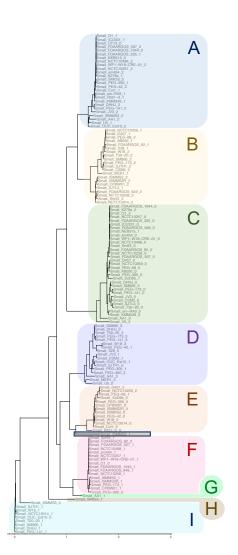
Figure 4. REPIN population sizes and conservation. The plots show two REPIN populations and their associated RAYTs that were identified in S. maltophilia using S. maltophilia Sm53 as reference. (A) The phylogenetic tree on the left side is a whole genome phylogeny generated by andi (Haubold et al. 2015). Shown on the right are REPIN population sizes (which is the largest REPIN cluster calculated by MCL) and the number of associated RAYTs sorted by the genome phylogeny. The green REPIN populations and associated RAYTs are present in most strains in high abundance (maximum of 239 occurrences in S. maltophilia K279a, left panel). (B) The orange population in contrast is present in much lower numbers (maximum of 61 occurrences in S. maltophilia MER1, right panel). Note, REPIN populations are assigned consistent colours based on their abundance in the reference genome. For example, the most abundant REPIN population in the reference is always coloured in green, and the second most abundant population is always coloured in orange. (C and D) Proportion of master sequence in S. maltophilia REPIN populations. The master sequence in a REPIN population is the most common REPIN sequence. At equilibrium the higher the proportion of the master sequence in the population the higher the replication rate (Bertels, Gokhale, et al. 2017). The presence and absence of an associated RAYT is also indicated by the colours of the dots. Empty circles indicate that the REPIN population is not associated with a RAYT gene in that genome.

- 431 RAREFAN visualizes REPIN population size and potential replication rate
- 432 The RAREFAN webserver visualizes REPIN population size and RAYT numbers in barplots. Barplots are ordered by the phylogenetic relationship of the submitted bacterial strains using ggtree (Yu 433 434 et al. 2018). RAREFAN detects three populations when S. maltophilia Sm53 is selected as 435 reference strain (Figure 3A). The largest REPIN population (calculated by MCL from all REPINs of 436 that type) has a corresponding RAYT gene in almost all strains (first barplot in Figure 4A) and most REPIN populations contain more than 100 REPINs (second barplot in Figure 4A). The second 437 438 largest REPIN population in Sm53 (orange population in Figure 4B) is significantly smaller and 439 contains no more than 61 REPINs in any strain and most strains do not contain a corresponding 440 RAYT for this population. 441 RAREFAN also provides information on REPIN replication rate (Figure 4C and D). REPIN replication
- rate can be estimated by dividing the number of the most common REPIN sequence (master sequence) by the REPIN population size if the population is in mutation selection balance (Bertels, Gokhale, *et al.* 2017). If a REPIN replicates very fast most of the population will consist of identical sequences because mutations do not have enough time to accumulate between replication events. Hence, the proportion of master sequences will be high in populations that have a high replication rate. Transposable elements such as insertion sequences consist almost exclusively of

Deleted: In an

identical master sequences because the time between replication events is not sufficient to
accumulate mutations and because quick extinction of the element usually prevents the
accumulation of mutations after replication <u>(Park *et al.* 2021; Bertels, Rainey 2023)</u>. Sequence
<u>diversity of REPIN populations in contrast is much higher suggesting that REPINs replicate slowly</u>
and persist for long periods of time.

In S. maltophilia the proportion of master sequences in the population does not seem to correlate 453 454 well with REPIN population size, both in the green and the orange population (Figures 4C and D). 455 Similar observations have been made in P. chlororaphis (Bertels, Rainey 2023), and may suggest 456 that an increase in population size is not caused by an increase in replication rate. Population size 457 is likely to be more strongly affected by other factors such as the loss of the corresponding RAYT 458 gene, which leads to the decay of the REPIN population. One could even speculate that high REPIN replication rates are more likely to lead to the eventual demise of the population due to 459 460 the negative fitness effect of high replication rates on the host (Park et al. 2021; Bertels, Rainey 461 <u>2023</u>).


The presence of RAYTs and the size of the corresponding REPIN population do correlate 462 463 surprisingly well (Figure 4A and B, p-value = 0.008 of a linear model of independent contrasts 464 (Felsenstein 1985) of green RAYT and REPIN number, p-value = 0.003 for orange REPIN 465 populations). Green RAYTs are absent from an entire S. maltophilia clade (middle of Figure 4A). 466 This clade has also lost a significant amount of green REPINs, and the proportion of the master sequences in these populations is low (Figure 4C). Similarly, genomes without orange RAYTs have 467 smaller REPIN populations in the orange population than genomes with the corresponding RAYT 468 469 (Figure 4D). A similar observation has been made previously in E. coli, P. chlororaphis, N. 470 meningitidis and N. gonorrhoeae where the loss of the RAYT gene is followed by a decay of the 471 associated REPIN population (Park et al. 2021; Bertels, Rainey 2023).

Deleted: (Park *et al.* 2021; Bertels, Rainey 2022). REPIN populations in contrast replicate slowly and persist for long periods of time, which means that a high proportion of master sequences suggests a high REPIN replication rate.

Deleted: (Bertels, Rainey 2022)

-(Formatted: Font: Calibri
(Formatted: Font: Calibri
(Field Code Changed
\uparrow	Deleted: 2022
)(Formatted: Font: Calibri
(Deleted: Value
(Deleted: the
-(Deleted: Value

Deleted: 2022 Field Code Changed

482

Figure 5. Phylogeny of RAYT genes and their associated REPINs. The tree shows RAYT genes from 49 *S. maltophilia* strains. Colours of clades A-I are assigned according to their association with a REPIN found within <u>200</u> bp of the RAYT gene (see **Table 2**). Except for a single RAYT gene ISMMS3_1 (grey box), which could not be linked to a REPIN population.

REPIN palindromes

Deleted: 130

483 Table 2. REPIN palindromes associated with each RAYT clade.

RAYT population

А	CCGACC AAC GGTCGG
В	CCAACC AA GGTTGGC
С	CCGGCC AGC GGCCGG
D	TCCACGC ATG GCGTGGA
E	CCGAGC CCAT GCTCGG
F	TCGACT AAC AGTCGA
G	TCGACC AAC GGTCGA
Н	GCCGGGCATGGCCCGGC
I	AGTCGAGC TT GCTCGACT

Each RAYT clade from Figure 5 is associated with a unique imperfect palindrome that is present
at the 5' and/or 3' end of the RAYT gene.

486

487 Linking REPIN populations with RAYT genes can be challenging

488 Unfortunately, RAREFAN is not always able to link the correct REPIN population with the correct

489 RAYT gene. In some RAREFAN runs, associations between RAYTs and REPINs are not

490 monophyletic, as for example the red <u>RAYT clade</u> in **Figure 3A**. However, the same clade of RAYTs

491 is uniformly coloured in yellow in Figure 3D, suggesting that the entire RAYT clade is associated

492 with the same REPIN group.

493 An analysis of all REPIN groups that were identified by RAREFAN across four different RAREFAN

runs (Table 1, one additional analysis was performed with ISMMS3) showed that there are a total

495 of nine different REPIN groups, each defined by an individual central palindrome (**Table 2**). Each

496 REPIN group is associated with a monophyletic RAYT group (Figure 5). Only a single RAYT is not

497 associated with a REPIN population (ISMMS3_1).

498 RAREFAN could not link a REPIN to the RAYT gene ISMMS3_1 (Figure 5, grey box). While there is

499 a sequence that resembles the A palindrome as well as variants of the C palindrome flanking both

500 sides of the RAYT gene (Supplementary Figure 2), none of the sequences formed REPIN

501 populations large enough to be identified by RAREFAN. Presumably the RAYT ISMMS3 1, which

Deleted: RAYTs

503 is only present in a single S. maltophilia strain, is at the early stages of establishing a REPIN

504 population, and the REPIN population has not spread to a considerable size yet.

505 Jf the maximum REPIN-RAYT distance parameter is too small then RAREFAN will also fail to

506 correctly link REPINs and RAYTs. For example, when the maximum REPIN-RAYT distance

507 parameter is set to 130bp there are two cases where RAREFAN fails to link RAYT genes with

508 _REPINs (ISSMS2_ and ISSMS2R_1, Supplementary Figure 1 D and E). When the parameter is set

509 to a distance of 200 bp, (default RAREFAN setting), RAREFAN correctly links these REPINs to the

510 RAYT gene.

511 In three cases the wrong REPIN population was linked to a RAYT gene. In our dataset this can

happen when RAYTs are flanked by seed sequences from two different REPIN populations
(Supplementary Figure 1 A-C). A single REP sequence from the "wrong" (non-monophyletic
RAYT) clade occurs together with multiple REP or REPIN sequences from the "right"
(monophyletic in a different RAREFAN run) clade. REPINs are linked to the "wrong" RAYT when
the correct REPIN population is absent in the chosen reference genome. This problem can be

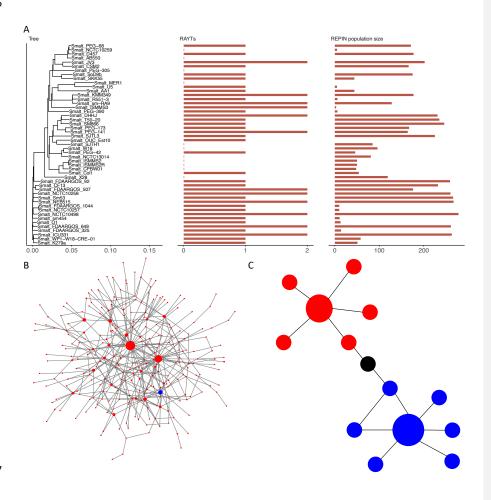
517 alleviated by performing analyses with multiple reference genomes and comparing the results.

518 REPIN groups may be lost when the seed distance is too large

The seed distance parameter determines whether two highly abundant sequences are sorted into the same or different REPIN groups (**Figure 2B**). If two REPINs from two different groups occur next to each other, at a distance of less than the seed distance parameter, then the two seeds are erroneously sorted into the same group. If two different REPIN groups are sorted into the same group then one of the groups will be ignored by RAREFAN, because only the most abundant seed in each group will be used to identify REPINs.

A manual analysis (*e.g.*, multiple sequence alignment) of sequences in the groupSeedSequences folder of the RAREFAN output can identify erroneously merged REPIN groups. In *S. maltophilia*, groups are separated well when the distance parameter is set to 15 bp and Sm53 is used as a reference. When the parameter is set to 30 bp instead, one of the REPIN groups will be missed by RAREFAN. Deleted: There

Deleted: more Deleted: failed


Deleted: any

Deleted: Detailed sequence analyses showed that the respective REPINs are located at a distance of more than 130 bp (an adjustable parameter in RAREFAN). These REPINs are ignored by RAREFAN by default. However, this parameter can be adjusted manually and when

Deleted: ,

A small seed distance parameter will separate seed sequences belonging to the same REPIN group into different groups. Hence, RAREFAN will analyse the same REPIN group multiple times. While this will lead to increased RAREFAN runtimes, these errors, are easy to spot, because (1) the same RAYT gene will be associated to multiple REPIN groups, (2) the central palindrome between the group is identical and (3) the master sequence between the groups will be very similar.

547

Figure 6. Closely related REPIN populations may be merged by RAREFAN. (A) REPIN group 2 identified in a *S. maltophilia* Sm53 RAREFAN run. The RAREFAN result suggests that REPIN group 2 is sometimes associated with two RAYTs. (**B**) A closer inspection of the data shows that group 2 is a combination of two different REPIN groups, the "real" group 2 and group 0. The network shown, visualizes all REP sequences identified as group 2. Nodes in the network represent 21 bp long REP sequences. Two nodes are connected if the sequences they represent differ by exactly one nucleotide. The node size indicates the abundance of the sequence in the genome. The blue node represents the most common group 2 sequence, occurring 65 times in the genome. The largest red node occurs 407 times in the genome and resembles a group 0 REP sequence. (**C**) Illustration of how small changes to a single sequence can connect two sequence <u>clusters</u>. The most common 21 bp long sequence in group 2. There is a set of sequences that connects these two groups that only differ in exactly one position each (nodes connected by an edge), which passes through the black node. If there is such an unbroken path between REP sequences, then REPIN groups will be merged.

Deleted: Grou	c		
Deleted: Grou	D		
Deleted: Grou	D		
Deleted: Grou	D		
Deleted: Grou	c		
Deleted: Grou	D		
Deleted: cluste	er		
Deleted: Grou	C		
Deleted: Grou	C		

548

549 Closely related REPIN groups may be merged into a single group by RAREFAN 550 Incorrect merging of REPIN groups can occur when two REPIN groups are closely related. We 551 identified merged REPIN groups in S. maltophilia because RAREFAN linked some REPIN groups 552 with two RAYT genes in the same genome (Figure 6A). While REPIN groups linked to two RAYTs 553 have been observed before in Neisseria meningitidis (Bertels, Rainey 2023), it is particularly 554 unusual in S. maltophilia due to some key differences between REPIN-RAYT in the two bacterial 555 species. First, N. meningitidis contains Group 2 RAYTs and S. maltophilia only contains Group 3 556 RAYTs (Bertels, Gallie, et al. 2017), two very divergent RAYT gene families. Second, RAYTs that 557 are associated with the same REPIN group in N. meningitidis are almost identical, since they are 558 copied by an insertion sequence in trans (Bertels, Rainey 2023), something that is not the case 559 for S. maltophilia, where the two RAYTs are very distinct and guite distantly related from each 560 other (green and red clade in Figure 3A, or clade A and C in Figure 5). 561 A closer inspection of all sequences identified in REPIN group 2 shows that it also contains

sequences belonging to REPIN group 0 (palindromes linked to clade A and C in **Table 2**). The relationship between the sequences shows that there is a chain of sequences that all differ by at most a single nucleotide between the most abundant sequence in group 2 to the most abundant

sequence in group 0 (Figure 6B and C). Hence, the reason group 0 and group 2 are merged is that

Deleted: While REPIN groups linked to two RAYTs has been observed before in *Neisseria meningitidis* (Bertels, Rainey 2022)...

Deleted: RAYTs in Deleted: belong to

Deleted: RAYTs in
Deleted: belong to
Deleted: groups.

Deleted: to

.

Deleted: (Bertels, Rainey 2022), something that is not the case for *S. maltophilia*, where the two RAYTs are very distinct

577 they are too closely related to each other and hybrids of the two REPIN groups exist. Because 578 sequence groups are built by identifying all related sequences in the genome recursively, closely 579 related groups (the REPIN group 0 seed only differs in four nucleotides from the REPIN group 2 seed sequence) can be merged into a single REPIN group. REPIN population size and RAYT number 580 581 are the sum of REPIN group 0 and 2. There are various possibilities to resolve this issue: (1) 582 subtract sequences from group 0 (which does not contain group 2) from REPIN group 2; (2) use 583 a different sequence seed from the group 2 seed collection in the seed sequence file 584 (groupSeedSequences/Group Smalt Sm53 2.out); (3) sometimes it may be possible to 585 rerun RAREFAN with a different reference strain where the issue does not occur; or (4) increase 586 the length of the seed sequence.

587 Performance

We measured the elapsed time for a complete RAREFAN run for three different species and for 5, 10, 20, and 40 genomes with randomly selected reference strains and the two query RAYTs (yafM_Ecoli and yafM_SBW25). For a given number N of submitted genomes of average sequence length L (in megabases), a RAREFAN run completes in approximately T = (8-10 seconds) * N * L on our moderate server hardware (4 CPU cores, 16 GB shared RAM) (**Supplementary Figure 3** and **4**).

594 Discussion

RAREFAN allows users to quickly detect REPIN populations and RAYT transposases inside
bacterial genomes. It also links the RAYT transposase genes to the REPIN population it duplicates.
These data help the user to study REPIN-RAYT dynamics in their strains of interest without a
dedicated bioinformatician, and hence will render REPIN-RAYT systems widely accessible.
One limitation of RAREFAN is that REPINs can only be identified in genomes when they are

symmetric (**Figure 1**). Symmetric REPINs have seed sequences that can morph into each other by a series of single substitutions (intermediate sequences need to be present in the genome). A REPIN consists of a 5' and a 3' REP sequence. If one of these REP sequences contains an insertion or deletion, which the other REP sequence does not contain then RAREFAN will not recognize the second repeat of the seed sequence. In this case, RAREFAN will not be able to identify REPINs but can still be used to analyze REP singlet populations. To date, the only asymmetric REPIN
populations <u>known to us</u> are found in *E. coli*. However, it is likely that asymmetric REPINs also
exist in other microbial species.

608 RAREFAN sometimes cannot correctly divide REPINs into REPIN groups. Either because REPINs

- from different groups occur in close proximity in the genome, an issue that can easily be solved
- 610 by adjusting a RAREFAN parameter, or because two REPIN groups are very closely related (Figure
- 61. G). Unfortunately, RAREFAN is not able to automatically detect and resolve the assignment of
- 612 closely related REPINs into groups yet. Hence it is advisable to manually check associations
- 613 between REPIN groups and RAYT genes by analyzing the composition of REPIN groups.
- 614 In the future we aim to make RAREFAN even more versatile and easier to use by, for example,
- 615 automatically integrating data from public databases such as <u>GenBank</u>, and <u>creating a</u> RAREFAN
- 616 Galaxy workflow (Afgan *et al.* 2018).

Deleted: known

- 617 RAREFAN makes the study of REPIN-RAYT systems more accessible to any biologist or 618 bioinformatician interested in studying intragenomic sequence populations. Our tool will help
- 619 understand the purpose and evolution of REPIN-RAYT systems in bacterial genomes.

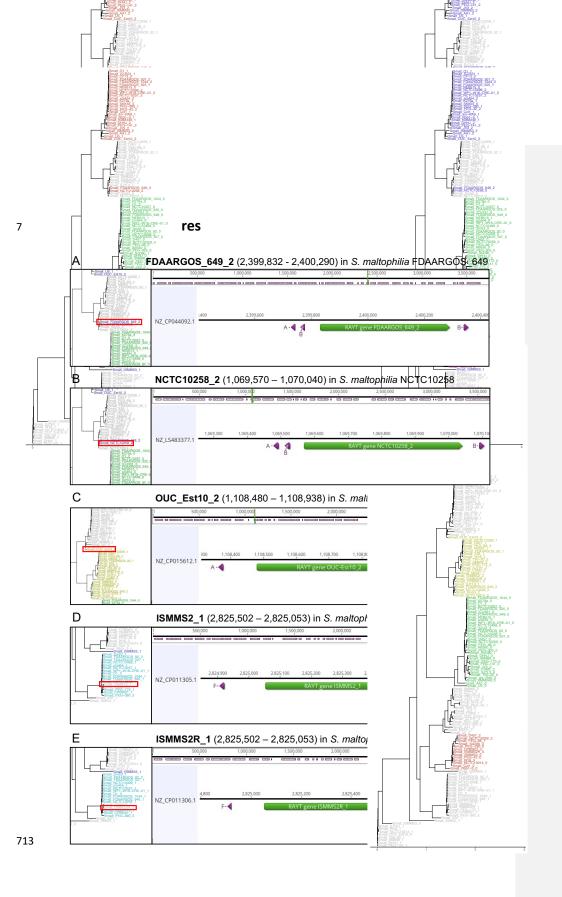
620 Acknowledgements

- 621 We would like to thank Prajwal Bharadwaj for assisting us with the sequence analysis and Jenna
- 622 Gallie for valuable feedback on the manuscript.

623 References

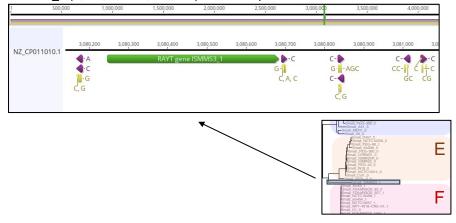
- 624 Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Cech M, Chilton J, Clements D, Coraor N,
- 625 Grüning BA, Guerler A, Hillman-Jackson J, Hiltemann S, Jalili V, Rasche H, Soranzo N,
- 626 Goecks J, Taylor J, Nekrutenko A, Blankenberg D (2018) The Galaxy platform for
- 627 accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic
- 628 Acids Res., 46, W537-W544-W537–W544. https://doi.org/10.1093/nar/gky379

633	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool.	
634	Journal of Molecular Biology, 215 , 403–410. https://doi.org/10.1006/jmbi.1990.9999	
635	Arnold K, Gosling J, Holmes D (2005) The Java programming language. Addison Wesley	
636	Professional.	
637	Bertels F, Gallie J, Rainey PB (2017) Identification and Characterization of Domesticated Bacterial	
638	Transposases. Genome Biology and Evolution, 9 , 2110–2121.	
639	https://doi.org/10.1093/gbe/evx146	
640	Bertels F, Gokhale CS, Traulsen A (2017) Discovering Complete Quasispecies in Bacterial	
641	Genomes. Genetics, 206, 2149–2157. https://doi.org/10.1534/genetics.117.201160	
642	Bertels F, Rainey PB (2011a) Within-Genome Evolution of REPINs: a New Family of Miniature	
643	Mobile DNA in Bacteria. PLoS genetics, 7, e1002132.	
644	https://doi.org/10.1371/journal.pgen.1002132	
645	Bertels F, Rainey PB (2011b) Curiosities of REPINs and RAYTs. Mobile Genetic Elements, 1, 262-	
646	268. https://doi.org/10.4161/mge.18610	
647	Bertels F, Rainey PB (2023) Ancient Darwinian replicators nested within eubacterial genomes.	Deleted: 2022
648	<u>BioEssays</u> , 45 , 2200085. https://doi.org/10. <u>1002/bies.202200085</u>	Deleted: , 2021.07.10.451892.
649	Bichsel M, Barbour AD, Wagner A (2010) The early phase of a bacterial insertion sequence	Deleted: 1101/2021.07.10.451892
650	infection. Theoretical Population Biology. https://doi.org/10.1016/j.tpb.2010.08.003	
651	Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+:	
652	architecture and applications. BMC Bioinformatics, 10, 421–9.	
653	https://doi.org/10.1186/1471-2105-10-421	


657	van Dijk B, Bertels F, Stolk L, Takeuchi N, Rainey PB (2022) Transposable elements promote the
658	evolution of genome streamlining. Philosophical Transactions of the Royal Society B:
659	Biological Sciences, 377, 20200477. https://doi.org/10.1098/rstb.2020.0477
660	Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.
661	Nucleic Acids Research, 32 , 1792–1797. https://doi.org/10.1093/nar/gkh340
662	Felsenstein J (1985) Phylogenies and the comparative method. American Naturalist, 1–15.
663	Grinberg M (2018) Flask web development: developing web applications with python. O'Reilly
664	Media, Inc.
665	Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and
666	methods to estimate maximum-likelihood phylogenies: assessing the performance of
667	PhyML 3.0. Systematic Biology, 59, 307–321. https://doi.org/10.1093/sysbio/syq010
668	Haubold B, Klötzl F, Pfaffelhuber P (2015) andi: fast and accurate estimation of evolutionary
669	distances between closely related genomes. Bioinformatics, 31 , 1169–1175.
670	https://doi.org/10.1093/bioinformatics/btu815
671	Higgins CF, Ames GF, Barnes WM, Clement JM, Hofnung M (1982) A novel intercistronic
672	regulatory element of prokaryotic operons. <i>Nature</i> , 298 , 760–762.
673	https://doi.org/10.1038/298760a0
674	Initiative TOS (2021) The MIT License.
675	Kearse M, Moir R, Wilson A, Stones-Havas S (2012) Geneious Basic: an integrated and extendable
676	desktop software platform for the organization and analysis of sequence data
677	Kleinmann SG, Rudolph S, Vila S, Rodin J, Peña JF-S (2021) The Debian GNU/Linux Operating

678

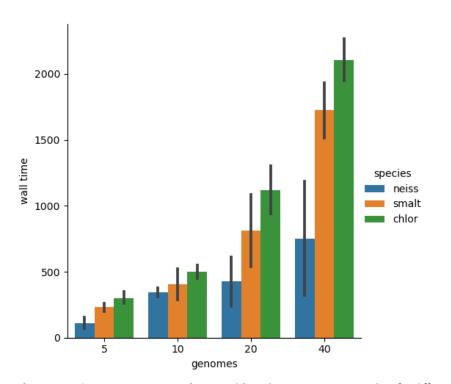
System Manual.


679	Lawrence JG, Ochman H, Hartl DL (1992) The evolution of insertion sequences within enteric
680	bacteria. Genetics, 131, 9–20. https://doi.org/10.1093/genetics/131.1.9
681	Nunvar J, Huckova T, Licha I (2010) Identification and characterization of repetitive extragenic
682	palindromes (REP)-associated tyrosine transposases: implications for REP evolution and
683	dynamics in bacterial genomes. BMC Genomics, 11, 44. https://doi.org/10.1186/1471-
684	2164-11-44
685	Park HJ, Gokhale CS, Bertels F (2021) How sequence populations persist inside bacterial genomes.
686	Genetics, 217. https://doi.org/10.1093/genetics/iyab027
687	R Core Team (2016) R: A Language and Environment for Statistical Computing.
688	Rankin DJ, Bichsel M, Wagner A (2010) Mobile DNA can drive lineage extinction in prokaryotic
689	populations. Journal of Evolutionary Biology. https://doi.org/10.1111/j.1420-
690	9101.2010.02106.x
691	RStudio, Inc (2013) Easy web applications in R.
692	Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B (2000) Artemis:
693	sequence visualization and annotation. <i>Bioinformatics</i> , 16 , 944–945.
694	https://doi.org/10.1093/bioinformatics/16.10.944
695	Sawyer SA, Dykhuizen DE, DuBose RF, Green L, Mutangadura-Mhlanga T, Wolczyk DF, Hartl DL
696	(1987) Distribution and Abundance of Insertion Sequences Among Natural Isolates of
697	Escherichia coli. Genetics, 115, 51–63. https://doi.org/10.1093/genetics/115.1.51
698	Ton-Hoang B, Siguier P, Quentin Y, Onillon S, Marty B, Fichant G, Chandler M (2012) Structuring
699	the bacterial genome: Y1-transposases associated with REP-BIME sequences. Nucleic
700	Acids Research, 40, 3596–3609. https://doi.org/10.1093/nar/gkr1198

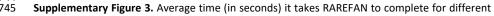
701	Van Dongen S (2000) A cluster algorithm for graphs. <i>Report-Information systems</i> , 1–40.
702	Van Rossum G, Drake Jr FL (1995) Python reference manual. Centrum voor Wiskunde en
703	Informatica Amsterdam.
704	Wu Y, Aandahl RZ, Tanaka MM (2015) Dynamics of bacterial insertion sequences: can
705	transposition bursts help the elements persist? BMC Evolutionary Biology, 15, 288–12.
706	https://doi.org/10.1186/s12862-015-0560-5
707	Yu G, Lam TT-Y, Zhu H, Guan Y (2018) Two Methods for Mapping and Visualizing Associated Data
708	on Phylogeny Using Ggtree. (FU Battistuzzi, Ed,). Molecular biology and evolution, 35,
709	3041–3043. https://doi.org/10.1093/molbev/msy194
710	
711	

714 Supplementary Figure 1. Sequence analysis shows REPIN groups are indeed associated with 715 monophyletic RAYTs. Non-monophyletic or missing associations to REPIN populations identified 716 by RAREFAN were investigated in the corresponding genomes using Geneious (Kearse et al. 717 2012). Red boxes mark the position of the atypical RAYT that is being analyzed in detail. Mapping 718 of REPIN palindromes A-I (with zero mismatches) shows FDAARGOS 649 2 (A), NCTC10258 2 719 (B), and OUC_Est_2 (C) are linked to the wrong REPIN group because REP singlets that are 720 ordinarily linked to a RAYT sister clade are found in close proximity to the RAYT. These wrong 721 associations between REPIN and RAYT usually occur when the correct REPIN population is absent 722 from the reference genome. ISMMS2R_1 (D) and ISMMS2_1 (E) are not linked to REPIN 723 populations by RAREFAN when the maximum REPIN-RAYT distance parameter is set to 130 bp. 724 The RAYTs are linked to the correct REPIN populations when the REPIN-RAYT distance parameter 725 is set to 200 bp (default). Nucleotide sequences and positions were extracted from output files generated by RAREFAN. Complete genome sequences are available in NCBI Nucleotide Database 726 using Accessions: (A) NZ_CP044092.1, (B) NZ_LS483377.1, (C) NZ_CP015612.1, (D) 727 728 NZ CP011306.1, (E) NZ CP011305.1.

ISMMS3_1 (3,080,683 – 3,080,246) in S. maltophilia ISMMS3



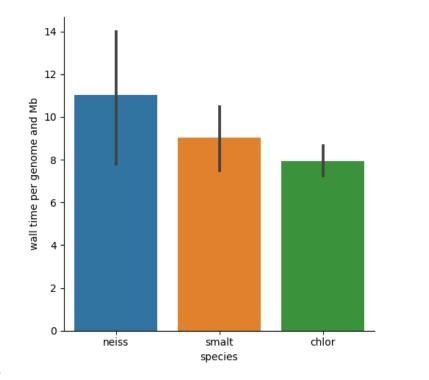
729


Supplementary Figure 2. RAYT gene ISMMS3_1 cannot be linked to a REPIN population. The sequence of the RAYT gene ISMMS3_1 and its flanking sequences were analysed in Geneious (Kearse *et al.* 2012). The inset shows the location of ISMMS3_1 in the RAYT phylogeny (grey box). When mapping all of the identified palindromes to the RAYT region and allowing up to four mismatches (yellow annotations), various mutants of palindrome C were found in close proximity of the RAYT gene. However, we could not identify a corresponding REPIN population, which may indicate that the negativities have not used and in the negativity.

indicate that the population has not yet expanded in the genome.

Deleted: were Deleted: population Deleted: because Deleted: corresponding seed sequences were located at a Deleted: of more than Deleted: from Deleted: RAYT gene.

744 745


746 genome numbers from three bacterial species (*N. meningitidis, N. gonorrhoeae, S. maltophilia,* 747 *Pseudomonas chlororaphis*). Black bars indicate the 95% CI across four runs, where two runs

share the same query RAYT. For each run reference and query strains were randomly selected.

All measurements were performed on 4CPU cores with 16 GB of shared memory.

750

Formatted: Font: Italic

Supplementary Figure 4. Approximate elapsed run time per megabase sequence length
 calculated from the same runtime data generated in Supplementary Figure 3.

 Page 11: [1] Deleted
 Frederic Bertels
 26/01/2023 08:01:00

I