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Abstract
In ambiguous stop/sense genetic codes, the stop codon(s) not only terminate translation but 

can also encode amino acids. Such codes have evolved at least four times in eukaryotes, 

twice among ciliates (Condylostoma magnum and Parduczia sp.). These have appeared to 

be isolated cases whose next closest relatives use conventional stop codons. However, little 

genomic data have been published for the Karyorelictea, the ciliate class that contains 

Parduczia sp., and previous studies may have overlooked ambiguous codes because of 

their apparent rarity. We therefore analyzed single-cell transcriptomes from four of the six 

karyorelict families to determine their genetic codes. Reassignment of canonical stops to 

sense codons was inferred from codon frequencies in conserved protein domains, while the 

actual stop codon was predicted from full-length transcripts with intact 3’-UTRs. We found 

that all available karyorelicts use the Parduczia code, where canonical stops UAA and UAG 

are reassigned to glutamine, and UGA encodes either tryptophan or stop. Furthermore, a 

small minority of transcripts may use an ambiguous stop-UAA instead of stop-UGA. Given 

the ubiquity of karyorelicts in marine coastal sediments, ambiguous genetic codes are not 

mere marginal curiosities but a defining feature of a globally distributed and diverseabundant

group of eukaryotes.
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Introduction
In addition to the “standard” genetic code used by most organisms, there are numerous 

variant codes across the tree of life, and new ones continue to be discovered [1–3]. The 

differences between codes lie in which amino acids are coded by which codon, as well as 

which codons are used to start and terminate translation (stop codons). Much of the variation

is concentrated in a small number of codons, particularly the canonical stop codons UAA, 

UAG, and UGA, which have repeatedly been reassigned to encode amino acids. The most 

striking variants are ambiguous codes where one codon can have multiple meanings. The 

outcome during translationThis can be stochastic, such as in stop codon readthrough [4], or 

translation of CUG as either leucine or serine by Candida spp. [5]. Alternatively, they can be 

context-dependent, such as UGA encoding selenocysteine only in selenoproteins [6], 

meaning that the translation system is able to interpret the codon correctly as either an 

amino acid or a stop.

Other context-dependent stop/sense codes have been discovered where all the stop codons

used by the cell are potentially also sense codons. These have evolved independently 

several times among the eukaryotes [7–10]: parasitic trypanosomes of the genus 

Blastocrithidia (three different species) use UAA and UAG to encode stop/glutamate (NCBI 

Genetic Codes ftp.ncbi.nih.gov/entrez/misc/data/gc.prt, table 31); a strain of the marine 

parasitic dinoflagellatealveolate Amoebophrya and a marine karyorelict ciliate, Parduczia 

sp., have convergently evolved to use UGA for stop/tryptophan (table 27); and the marine 

heterotrich ciliate Condylostoma magnum uses UGA for stop/tryptophan and UAA/UAG for 

stop/glutamine (table 28).

The ciliates are a clade with an unusual propensity for variant genetic codes [11]. At least 

eight different nuclear genetic codes are used by ciliates [10], including some of the first 

examples of variant codes documented in nuclear genomes [12–16]. At first glance, 

organisms that use these ambiguous stop/sense codes appear to be isolated single species 

or strains embedded among relatives with conventional codes. For example, other 

heterotrichs related to Condylostoma use the standard code (e.g. Stentor) or the 

Blepharisma code. Additionally, a previous survey of genetic codes across the ciliate tree, 

including numerous uncultivated heterotrichs and karyorelicts, did not report any new 

examples of organisms that use ambiguous stop/sense codes, nor appeared to have 

accounted for such a possibility in their methods [17]. However our own preliminary studies 

appeared to contradict this, finding other karyorelicts that use the same genetic code as 
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Parduczia.

The karyorelicts are a class-level taxon within the ciliates, and sister group to the 

heterotrichs. Unlike other ciliates, the somatic nuclei (macronuclei) of karyorelicts do not 

divide but must differentiate anew from germline nuclei (micronuclei) every time, even during

vegetative division [18]. They are globally distributed and commonly encounteredabundant 

in the sediment interstitial habitat of marine coastal environments [19]. At least ~150 species

have been formally described but this is believed to be a severe underestimate of the true 

diversity [20,21], and they are also poorly represented in sequence databases.

We therefore sequenced additional karyorelict transcriptomes and reanalyzed published 

data to assess whether karyorelicts other than Parduczia could be using ambiguous genetic 

codes.
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Results
Ten new single-cell RNA-seq libraries from karyorelicts and heterotrichs were sequenced in 

this study, representing interstitial species from marine sediment at Roscoff, France. These 

were analyzed alongside 33 previously published RNA-seq libraries 

(doi:10.17617/3.XWMBKT, Table S1). After filtering for quality and sufficient data, 25 

transcriptome assemblies (of which 15 were previously published) were used to evaluate 

stop codon reassignment (15 previously published), vs. 26 assemblies (16 previously 

published) for inferring the actual stop codon(s) (Supplementary Information).

Reassignment of all three canonical stop codons to sense codons in karyorelicts

Codon frequencies in protein-coding sequences were calculated from sequence regions that

aligned to conserved Pfam domains, in transcripts with poly-A tails. Transcriptomes and 

genomic coding sequences (CDSs) from ciliates with known genetic codes were used as a 

comparison to estimate the false positive rate of stop codons being found in these 

alignments, e.g. because of misalignments, misassembly, or pseudogenes.

Among karyorelicts, all three canonical stop codons (UAA, UAG, UGA) were observed in 

conserved protein domains, with frequencies between 0.08-2.9%, which fell within the range 

of codon frequencies observed for unambiguous sensecoding codons in other 

ciliatesorganisms where the genetic code is knownwith known genetic codes (0.03-6.8%, 

excluding the outlier CGG in Tetrahymena thermophila with only 0.003%). This range was 

also similar to frequencies of the ambiguous stops in Parduczia and the heterotrich 

Condylostoma (Figure 1A). UGA was generally less frequent than UAA/UAG in all 

karyorelicts, but the frequencies varied between taxa, reflecting their individual codon usage 

biases or which genes are assembled in the transcriptome because of sequencing depth. 

UGA was the least-frequent codon in most Trachelocercidae and Geleiidae, but was more 

frequent in Loxodidae and Kentrophoridae than some other codons, especially C/G-rich 

ones like CGG (Figure 1A). Nonetheless, frequencies of the UGA codon in karyorelictsthese 

were all still one to two orders of magnitude higher than the observed frequencies of in-

frame actual stops from other ciliate species in the reference set.
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Figure 1. (A) Codon frequencies of canonical stop codons (UGA: blue, UAA: orange, UAG: 

green) and other codons (gray) in conserved protein domains found by hmmscan search in 

six-frame translations of transcriptome assemblies (doi:10.17617/3.XWMBKT, Table S1) or 

genomic CDSs (doi:10.17617/3.XWMBKT, Table S2) vs. Pfam. Names of libraries from this 

study are highlighted in bold. (left) Assignments of canonical stops for organisms with known

genetic codes, followfollowing Swart et al., 2016. Names of libraries from this study are 

highlighted in bold. (B) Fraction of full-length transcripts that have at least one canonical stop

codon in the putative coding region, grouped by genus (except Trachelocercidae, where 

classification was unclear).
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In-frame UGAs were found in 10.5 to 76.9% of transcripts with putative coding regions 

predicted by full-length Blastx hits per karyorelict library (Figure 1B4D). This frequency 

verified that in-frame UGAs were not concentrated in a small fraction of potentially spurious 

sequences but in fact found in many genes. Conserved ‘“marker”’ genes that were generally 

expected to be present in ciliate genomes (BUSCO orthologs, Alveolata marker set, [22]) 

also contained in-frame UGAs. The karyorelict transcriptome assemblies were relatively 

incomplete, with 1.8% to 20.5% (median 12.0%) estimated completeness based on the 

BUSCO markers, and a total of 91 of 171 BUSCO orthologs were found in these assemblies 

(Figure 2A). Nonetheless, 46 BUSCO orthologs from 14 karyorelict assemblies were found 

with in-frame UGAs in conserved alignment positions (e.g. Figure 2B, 2C), verifying that they

are not limited to poorly characterized or hypothetical proteins.

In comparison, the heterotrich Anigsteinia, for which two new sequence libraries were also 

produced and which was found in the same habitats as karyorelicts, had in-frame 

frequencies of ≤0.011% for all three canonical stop codons, which were comparable to 

frequencies of the known stop codons in Blepharisma (UAA, UAG) and Stentor (UAA, UAG, 

UGA) (max. 0.09%). Hence Anigsteinia probably does not have ambiguous sense/stop 

codons.

All karyorelicts had the same inferred amino acid reassignments for the three canonical 

stops: glutamine (Q) for UAA and UAG, and tryptophan (W) for UGA (Figure 3), matching 

previous predictions for Parduczia sp. and Condylostoma magnum [9,10].

6

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125



Figure 2. In-frame coding UGAs in conserved marker genes. (A) Completeness estimates of

heterotrich and karyorelict transcriptomes (library names in green and blue respectively), 

compared with genomic reference sequences from other ciliates (doi:10.17617/3.XWMBKT, 

Table S3); BUSCO Alveolata marker set. (B, C) Two examples of alignments (excerpts) for 

conserved orthologous protein-coding genes (orthologs 20320at33630 and 23778at33630), 

which contain in-frame UGAs translated as W in karyorelict sequences, flanked by 

conserved alignment blocks. 
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Figure 3. Weblogos representing the likely amino acid assignment of each codon in selected

libraries (library with most coverage per taxon of interest). Heights of each letter represent 

the relative frequencies (all scaled to 100%) of each amino acid in conserved residues 

aligning to that codon. The observed codon frequency (in %) is indicated below. Codons with

frequencies <0.02% are highlighted in red, representing either non-ambiguous stops or 

unassigned codons. Assignment of cysteine (C) for UGA in Anigsteinia is based on only 16 

alignments, of which 14 are to a likely selenoprotein (Pfam domain GSHPx); a.ssignment of 

glutamine (Q) for UAA and UAG in Blepharisma may represent recent paralogs or 

translational readthrough.
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Stop codons in karyorelicts and heterotrichs

Frequency of a codon in coding regions can be used to infer if it is a sense codon but not 

whether it can terminate translation, especially for ambiguous codes where codons that can 

terminate translation also frequently appear in coding sequences. Therefore we used full 

length transcripts with both a high quality Blastx alignment to a reference protein and a poly-

A tail to predict the likely stop codon(s) used in each sample. To avoid double counting, only 

one isoform was used per gene. We assumed that the true stop codon(s) were one or more 

of the three canonical stops UGA, UAA, UAG, and that if a contig has a high quality Blastx 

hit to a reference protein sequence, the true stop should lie somewhere between the last 

codon at the 3’ end of the hit region and the beginning of the poly-A. We reasoned that if the 

true stop codon set was used for annotation, (i) the number of transcripts without a putative 

true stop should be minimized; (ii) the variance of the 3’-untranslated region (3’-UTR) length 

should also be minimized because ciliate 3’-UTRs are known to be short (mostly <100 bp); 

and (iii) if there was more than one stop codon, the length distributions of the putative 3’-

UTRs for each stop codon should be centered on the same value.

With these criteria, the candidate stop codons for karyorelicts could be narrowed to two 

possibilities: UGA alone or UGA + UAA. If only UGA was permitted as a stop codon, 84-98%

of transcripts per library had a putative true stop, but if both UGA and UAA were permitted 

as stop codons, the proportion was over 98% (Figure 4A). Permitting both UGA+UAA as 

stops in karyorelicts resulted in a higher variance in 3’-UTR lengths compared to permitting 

only UGA. Although this was contrary to criterion (ii) above, we judged that this metric was 

not as useful in deciding whether UAA was also a stop codon, because the difference was 

small, and transcripts with putative UAA stops were relatively few This was at the expense of

somewhat more variance in the 3’-UTR length distribution, although we found that this metric

was of limited usefulness because UGA was always the majority in all stop codon 

combinations where it was present (Figures 4B, 4C). Both karyorelicts and heterotrichs in 

this study had short and narrowly distributed 3’-UTR lengths (median 28 nt, interquartile 

range 18 nt) (Figure 4C). The heterotrichs were shortest overall, with median lengths per 

taxon between 21 nt (Condylostoma) and 26 nt (Stentor), followed by the karyorelict families 

Trachelocercidae (33 nt), Geleiidae (31 nt), Kentrophoridae (37 nt), and Loxodidae (43 nt).
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Figure 4. Effect of different stop codon combinations on assembly metrics. Predicted stop 
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codon usage for each taxon from this study or previous publications highlighted in gray. (A) 

Strip plots for the fraction of full length contigs per transcriptome that have a putative stop 

codon from that specific combination (rows), i.e. in-frame, downstream of full-length Blastx 

hit vs. reference, and upstream of poly-A tail. Each point corresponds to one transcriptome 

assembly, grouped by taxonomic family (columns). (B) Scatterplots for standard deviation of 

3’-UTR lengths. (C) Histograms for 3’-UTR lengths, colored by putative stop codon (UGA: 

blue, UAA: orange, UAG: green), one representative library per family. (D) Fraction of full-

length transcripts that have at least one canonical stop codon in the putative coding region, 

grouped by family (further split to genus for Loxodidae and Geleiidae).
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Figure 5. Depletion of in-frame coding “stop” codons in the coding sequence (negative 

coordinates) immediately before the putative true stop codon (position 0) and their 

enrichment in the 3’-UTR (positive coordinates). Representative library with highest number 

of assembled full length contigs chosen per taxon. (A) Codon counts for UGA (blue), UAA 

(orange), and UAG (green) before and after putative true stop in Condylostoma magnum 

(uses all three as ambiguous stops), and three heterotrichs with unambiguous stops. (B) 

Codon counts for karyorelicts if only UGA is permitted as a stop codon. (C) Codon counts for

karyorelicts if both UGA and UAA are permitted as stop codons.
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In previous analyses of the ambiguous stop codons in Condylostoma and Parduczia, a 

distinct depletion of in-frame coding “stop” codons immediately upstream of the actual 

terminal stop was observed [10]. We could reproduce this depletion of all three canonical 

stops in Condylostoma and of UGA in Parduczia, about 10 to 20 codon positions before the 

putative terminal stop, in our reanalysis of the same data (Figure 5A). For the karyorelicts, if 

only UGA was permitted as a stop codon, we observed depletion of coding-UGA but also of 

coding-UAAs before the terminal stop-UGA (Figure 5B). If UGA + UAA were permitted as 

stops, the depletion of coding-UGA before terminal stops was still observed, andwhile the 

depletion of coding-UAA was even more pronounced (Figure 5C). Unfortunately, there were 

only a limited number of full-length karyorelict transcripts with putative stop-UAAs (max. 47 

contigs per library). We, therefore, concluded that UGA is the predominant stop codon in 

karyorelicts, but UAA may also function as a stop codon for about 1-10% of transcripts.

UAA and UAG were predicted as stop codons of Anigsteinia (Spirostomidae), consistent with

their near-absence from coding regions in this genus (see above, Figure 1A). UGA was not 

only near-absent from coding regions, but also rarely encountered as a putative stop codon, 

although it was not uncommon in 3’-UTRs. Similar rarity of UGAs as putative stops was also 

observed in Stentor and other heterotrichs that are said to use the standard code. Either (i) 

these heterotrichs use the standard genetic code with all three canonical stop codons but a 

strong bias against using UGA for stop, or (ii) UGA is an unassigned codon in these 

organisms. 
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Discussion
We have found evidence that the codon UGA is used as both a stop codon and to code for 

tryptophan by karyorelictean ciliates. The taxa sampled represent four of the six families of 

karyorelicts: Loxodidae, Trachelocercidae, Geleiidae, and Kentrophoriidae. When this 

distribution of genetic codes is mapped to an up-to-date phylogeny [20], we can infer that 

thethis ambiguous code, formerly reported only for Parduczia sp. (Geleiidae) among ciliates, 

was actually acquired at the root of the karyorelict clade (Figure 6). 

Figure 6. Genetic code diversity among karyorelict and heterotrich ciliates. (Left) 

Diagrammatic karyorelict + heterotrich tree with predicted stop codon reassignments 

mapped to each family. Subtree topologies are from Ma et al. (2022) and Fernandes et al. 

(2016) respectively. Branch lengths are not representative of evolutionary distances. (Right) 

Photomicrographs of ciliates (incident light) collected in this study from Roscoff, France; 

height of each panel 50 µm.
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Available data for Cryptopharynx (Karyorelictea: Cryptopharyngidae) were not conclusive. 

The canonical stop codons had frequencies between 0.02 and 0.07%, lower than for other 

karyorelicts, but higher than true stop codons, but Cryptopharyngidaethis family was 

represented by a single library that had high contamination from other eukaryotes 

(Supplementary Text) and there were too few high-confidence, full length transcripts for a 

reliable conclusion on its genetic code. No sequence data beyond rRNA genes were publicly

available for the remaining family, the monotypic Wilbertomorphidae, whose phylogenetic 

position in relation to the other karyorelicts is unclear because of long branch lengths, and 

which has to our knowledge only been reported once [23].

Ambiguous stop/sense codes are hence not just isolated phenomena, but are used by a 

major taxon that is diverse, globally distributed, and commonabundant in its respective 

habitats. In contrast, the heterotrichs, which constitute the sister group to Karyorelictea and 

are hence of the same evolutionary age, use at least three different genetic codes, including 

one with ambiguous stops (Figure 6). If organisms with ambiguous codes were isolated 

single species whose nearest relatives have conventional stops, as appears to be the case 

for Blastocrithidia spp. and Amoebophrya sp., we might conclude that these are uncommon 

occurrences that do not persist over longer evolutionary time scales. However, the 

karyorelict crown group diversified during the Proterozoic (posterior mean 455 Mya) and the 

stem split from the Heterotrichea even earlier, in the Neo-Proterozoic [24].

This study has benefited from several technical improvements. A highly complete, 

contiguous genome assembly with gene predictions is now available for the heterotrich 

Blepharisma stoltei [25]. Because Blepharisma is more closely related to the karyorelicts 

than other ciliate model species, which are mostly oligohymenophorans and spirotrichs, it 

improved the reference-based annotation of the assembled transcriptomes. Single-cell RNA-

seq libraries in this study were also sequenced to a greater depth, with a lower fraction of 

contamination from rRNA, and hence yielded more full length mRNA transcripts for analysis.

One proposed mechanism for how the cell correctly recognizes whether an ambiguous 

codon is coding or terminal is based on the proximity of translation stops to the poly-A tail of 

transcripts. In this model, tRNAs typically bind more efficiently to in-frame coding “stops” 

than eukaryotic translation release factor 1 (eRF1), hence allowing these codons to be 

translated. At the true termination stop codon, however, the binding of eRF1 can be 

stabilized by interactions with poly-A interacting proteins like PABP bound to the nearby 

poly-A tail, allowing it to outcompete tRNAs and hydrolyze the peptidyl-tRNA bond [10,26]. 

Consistent with this model, we found that karyorelict 3’-UTRs are also relatively short, and 
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that in-frame UGAs are depleted immediately before the putative true stop codon. 

Nonetheless, karyorelict 3’-UTRs are actually about 10 nt longer on average than those of 

heterotrichs.

Our results also raised the possibility that UAA is also used as an ambiguous stop codon for 

~1-10% of karyorelict transcripts, in addition to the main stop codon UGA. eRF1 may retain 

a weak affinity for UAA, and recognize UAA for terminating translation albeit with lower 

efficiency. In Blepharisma japonicum, where UAA and UAG are non-ambiguous stops and 

UGA encodes tryptophan (albeit at low frequency, 0.13%), heterologously expressed eRF1 

could still recognize all three codons in an in vitro assay, although efficiency of peptidyl-tRNA

hydrolysis was lower with UGA than for UAA and UAG [27]. In species with non-ambiguous 

stop codon reassignment, the effect of such “weak” ambiguity on the total pool of translated 

protein may be negligible, but it shows that there is a latent potential that could account for 

the repeated evolution of stop codon reassignments in ciliates. Furthermore, UAAs were 

even more abundant than UGAs in ciliate 3’-UTRs, which can be attributed to the low GC% 

of 3’-UTRs compared to coding sequences; other A/U-only codons were also enriched in 3’-

UTRs. Therefore, UAAs in the 3’-UTRs of karyorelicts may be a ‘“backstop”’ mechanism that

prevents occasional stop-codon readthrough, as proposed for tandem stop codons (TSCs) in

other species with reassigned stop codons [28]. In the minority of transcripts where in-frame 

stop-UGA is absent, the backstop may be adequate to terminate translation before the poly-

A tail and produce a functional protein most of the time. To verify our predictions that UGA is

the main stop codon and UAA a lower-frequency alternative stop, ribosome profiling and 

mass spectrometry detection of peptide fragments corresponding to the expected 3’-ends of 

coding sequences, e.g. as performed on Condylostoma [10], are the most applicable 

experimental methods. If a karyorelict species can be developed into a laboratory model 

amenable to genetic transformation, manipulation of the 3’-UTR length and sequence would 

allow us to test the “backstop” hypothesis directly and tease apart the factors contributing to 

translation termination in these organisms.

What selective pressures might favor the evolution and maintenance of an ambiguous 

genetic code? One possibility is that context-dependent sense/stop codonsthey confer 

mutational robustness by eliminating substitutions that cause premature stop codons. 

Ambiguous codesThey do not appear to be linked to a specific habitat: Blastocrithidia spp. 

and Amoebophrya sp. are both parasites of eukaryotic hosts, but of insects and free-living 

dinoflagellates respectively; whereas the karyorelict ciliates and Condylostoma are both 

found in marine interstitial environments, but live alongside other ciliates that have 
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conventional codes, such as Anigsteinia. Having short 3’-UTRs may predispose ciliates to 

adopt ambiguous codes by facilitating interactions between eRF1 and PABPs that could 

enable stop recognition, but other factors, including simply contingent evolution, appear to 

have led to their evolution it is not the only deciding factor because the 3’-UTRs of ciliates 

with conventional stop codons are also comparably short, particularly among the 

heterotrichs. 

Any adaptationist hypothesis for alternative and ambiguous codes will have to contend with 

the existence of related organisms with conventional codes that have similar lifestyles. 

Furthermore, once a stop codon has been reassigned to sense, it becomes increasingly 

difficult to undo without the deleterious effects of premature translation termination, and may 

function like a ratchet. Like the origins of the genetic code itself [29], we may have to be 

content with the null hypothesis that they are “frozen accidents” that reached fixation 

stochastically, and which are maintained because they do not pose a significant selective 

disadvantage.
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Materials and Methods

Sample collection

Surface sediment was sampled in September 2021 from two sites in the bay at Roscoff, 

France when exposed at low tide. Site A: shallow swimming enclosure, 48.72451 N, 

3.992294 W; Site B: adjacent to green algae tufts near freshwater outflow, 48.716169 N, 

3.995626 W. Upper 1-2 cm of sediment was skimmed into glass beakers, and stored under 

local seawater until use. Interstitial ciliates were collected by decantation: a spoonful of 

sediment was stirred in seawater in a beaker. Sediment particles were briefly allowed to 

settle out, and the overlying suspended organic material was decanted into Petri dishes. 

Ciliate cells were preliminarily identified by morphology under a dissection microscope and 

picked by pipetting with sterile, filtered pipette tips. Selected cells were imaged with incident 

light under a stereo microscope (Olympus SZX10, Lumenera Infinity 3 camera).

NEBNext cell lysis buffer (NEB, E5530S) was premixed and filled into PCR tubes; per tube: 

0.8 µL 10x cell lysis buffer, 0.4 µL murine RNAse inhibitor, 5.3 µL nuclease-free water. 

Picked ciliate cells were transferred twice through filtered local seawater (0.22 µm, Millipore 

SLGP033RS) to wash, then transferred with 1.5 µL carryover volume to 6.5 µL of cell lysis 

buffer (final volume 8 µL), and snap frozen in liquid nitrogen. Samples were stored at -80 °C 

before use.

Single-cell RNAseq sequencing

Samples collected in cell lysis buffer (doi:10.17617/3.XWMBKT, Table S1) were used for 

RNAseq library preparation with the NEBNext Single Cell / Low Input RNA Library Prep Kit 

for Illumina (NEB, E6420S), following the manufacturer’s protocol for single cells, with the 

following parameters adjusted: 17 cycles for cDNA amplification PCR, cDNA input for library 

enrichment normalized to 3 ng (or all available cDNA used for libraries where total cDNA 

was <3 ng), 8 cycles for library enrichment PCR. Libraries were dual-indexed (NEBNext 

Dual Index Primers Set 1, NEB E7600S), and sequenced on an Illumina NextSeq 2000 

instrument with P3 300 cycle reagents, with target yield of 10 Gbp per library.

RNA-seq library quality control and transcriptome assembly

Previously published karyorelict transcriptome data [17,30–32] were downloaded from the 

European Nucleotide Archive (ENA) (doi:10.17617/3.XWMBKT, Table S1). Contamination 

from non-target organisms was evaluated by mapping reads to an rRNA reference database 
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and summarizing the hits by taxonomy. Although RNAseq library construction enriches 

mRNAs using poly-A tail selection, there is typically still sufficient rRNA present in the final 

library to evaluate the taxonomic composition of the sample. All RNAseq read libraries 

(newly sequenced and previously published) were processed with the same pipeline: The 

taxonomic composition of each library was evaluated by mapping 1 M read pairs per library 

against the SILVA SSU Ref NR 132 database [33], using phyloFlash v3.3b1 [34]. Newly 

sequenced libraries were assigned to a genus or family using the mapping-based taxonomic 

summary, or full-length 18S rRNA gene if it was successfully assembled.

Reads were trimmed with the program bbduk.sh from BBmap v38.22 (http://sourceforge.net/

projects/bbmap/) to remove known adapters (right end) and low-quality bases (both ends), 

with minimum Phred quality 24 and minimum read length 25 bp. Trimmed reads were then 

assembled with Trinity v2.12.0 [35] using default parameters. Assembled contigs were 

aligned against the Blepharisma stoltei ATCC 30299 proteome [25] with NCBI Blastx v2.12.0

[36] using the standard genetic code and E-value cutoff 10-20, parallelized with GNU Parallel 

[37].

Morphological identifications of the newly collected samples were verified with 18S rRNA 

sequences from the Trinity transcriptome assemblies. rRNA sequences were annotated with 

barrnap v0.9. 18S rRNA sequences ≥80% of full length were extracted, except for two 

libraries (N4, N26) where the longest sequences were <80% and for which the two longest 

18S rRNA sequences were extracted instead. For comparison, reference sequences for 

Karyorelictea and Heterotrichea above 1400 bp from the PR2 database v4.14.0 [38] were 

used. Representative reference sequences were chosen by clustering at 99% identity with 

the cluster_fast method using Vsearch v2.13.6 [39]. Extracted and reference sequences 

were aligned with MAFFT v7.505 [40]. A phylogeny (Figure S3) was inferred from the 

alignment with IQ-TREE v2.0.3 [41], using the TIM2+F+I+G4 model found as the best-fitting 

model by ModelFinder [42]. Alignment and tree files are available from 

doi:10.17617/3.QLWR38. 18S rRNA sequences were deposited in the European 

Nucleotide Archive under accessions OX095806-OX095846.

Read pre-processing, quality control, and assembly were managed with a Snakemake 

v6.8.1 [43] workflow (https://github.com/Swart-lab/karyocode-workflow  , archived at   

doi:  10.5281/zenodo.6647650  ). Scripts for data processing described below were written in 

Python v3.7.3 using Biopython v1.74 [44], pandas v0.25.0 [45], seaborn v0.11.0 [46] and 

Matplotlib v3.1.1 [47] libraries unless otherwise stated.
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Prediction of stop codon reassignment to sense

Only contigs with poly-A tails ≥7 bp were used for genetic code prediction, to exclude 

potential bacterial contaminants, especially because several species (Kentrophoros spp., 

Parduczia sp., Supplementary Text) are known to have abundant bacterial symbionts. 

Presence and lengths of poly-A tails in assembled transcripts were evaluated with a Python 

regular expression. Library preparation was not strand-specific, hence contigs starting with 

poly-T were reverse-complemented, and contigs with both a poly-A tail and a poly-T head 

(presumably fused contig) were excluded. 

Codon frequencies and their corresponding amino acids were predicted with an updated 

version of PORC (v2.1, https://github.com/Swart-lab/PORC, archived at 

doi:10.5281/zenodo.6784075; managed with a Snakemake workflow, 

https://github.com/Swart-lab/karyocode-analysis-porc  , archived at   

doi:  10.5281/zenodo.6647652  ); the method has been previously described [10,48]. Briefly: a 

six-frame translation was produced for each contig in the transcriptome assembly, and 

searched against conserved domains in the Pfam-A database v32 [49] with hmmscan from 

HMMer v3.3.2 (http://hmmer.org/). Overall codon frequencies were counted from alignments 

with E-value ≤ 10-20. To ensure that there was sufficient data underlying the codon and 

amino acid frequencies, only those libraries with at least 100 observations for each of the 

coding codons in the standard genetic code were used for comparison of codon frequencies 

and for prediction of amino acid assignments.

Frequencies of amino acids aligning to a given codon were counted from columns where the

HMM model consensus was ≥50% identity in the alignment used to build the model (upper-

case positions in the HMM consensus). Sequence logos of amino acid frequencies per 

codon for each library were drawn with Weblogo v3.7.5 [50].

In addition to the transcriptomes, genomic CDSs of selected model species with different 

genetic codes [25,51–55] were also analyzed with PORC to obtain a reference baseline of 

coding-codon frequencies (doi:10.17617/3.XWMBKT, Table S2). These model species have 

non-ambiguous codes so they were not expected to have stop codons in the CDSs, except 

for the terminal stop.

Prediction of coding frame in full-length transcripts

“Full-length” transcripts (with poly-A tail, intact 3’-UTR, and complete coding sequence) were

desirable to predict the stop codon, characterize 3’-UTR metrics, and verify genetic code 

predictions. Contigs were therefore filtered with the following criteria: (i) poly-A tail ≥7 bp, 
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criterion following [10], (ii) contig contains a Blastx hit vs. B. stoltei protein sequence with E-

value ≤10-20 and where the alignment covers ≥80% of the reference B. stoltei sequence, (iii) 

both poly-A tail and Blastx hit agree on the contig orientation. For contigs with multiple 

isoforms assembled by Trinity, the isoform with the longest Blastx hit was chosen; in case of 

a Blastx hit length tie, then the longer isoform was chosen. Only libraries with >100 

assembled “full-length” transcripts were used for downstream analyses (Supplementary 

Text).

Metrics for evaluating potential stop codon combinations

For each of the 7 possible combinations of the 3 canonical stop codons (UGA, UAA, UAG), 

we treated the first in-frame stop downstream of the Blastx hit in each full-length transcript 

(including the last codon of the hit) as the putative stop codon, and recorded the number of 

full-length transcripts with a putative stop, the length of the 3’-UTR (distance from stop to 

beginning of the poly-A tail), as well as the codon frequencies for each position from 150 

codons upstream of the putative stop to the last in-frame three-nucleotide triplet before the 

poly-A tail.

Delimitation of putative coding sequences using Blastx hits

The start codon was more difficult to evaluate because the 5’ end of the transcript may not 

have been fully assembled, and there was no straightforward way to recognize its 

boundaries, unlike the 3’-poly-A tail. We used the following heuristic criteria to define the 

start of the CDS: first in-frame ATG upstream of the Blastx hit (including first codon of the 

hit), or first in-frame stop codon encountered upstream (to avoid potential problems with 

ORFs containing in-frame stops), whichever comes first. Otherwise, the transcript was 

assumed to be incomplete at the 5’-end and simply truncated with the required 1 or 2 bp 

offset to keep the CDS in frame.

Verification of in-frame UGAs in conserved marker genes

Full-length CDSs (see above) were translated with the karyorelict code (NCBI table 27). 

Conserved marker genes were identified with BUSCO v5.2.2 (protein mode, 

alveolata_odb10 marker set) [22], managed with a Snakemake workflow (https://github.com/

Swart-lab/karyocode-analysis-busco  , archived at doi:  10.5281/zenodo.6647679  ). Markers for 

additional ciliate species where relatively complete genome assemblies and gene 

predictions were available were also identified (doi:10.17617/3.XWMBKT, Table S3) 

[52,54,56–63]. For each BUSCO marker, the ciliate homologs were aligned with Muscle 
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v3.8.1551 [64]. Alignment columns corresponding to in-frame putatively coding UGAs of 

karyorelict sequences were identified. These positions were considered to be conserved if 

≥50% of residues were W or another aromatic amino acid (Y, F, or H).

Data availability
RNA-seq libraries sequenced for this study have been deposited at the European Nucleotide

Archive (https://www.ebi.ac.uk/ena/) under accession PRJEB50648. Lists of dataset 

accessions for each analysis (doi:10.17617/3.XWMBKT) and the 18S rRNA phylogeny 

(doi:10.17617/3.QLWR38) have been deposited at Edmond. 
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Supplementary Text. Quality metrics of single-cell transcriptome assemblies.

Table S1. Transcriptomic RNAseq libraries from karyorelict and heterotrich ciliates analyzed 

in this project. 

Table S2. Genomic CDS sequences of cultivated model ciliates with unambiguous stop 

codons, used for baseline comparison of coding vs. stop codon frequencies in HMMer 

searches of six-frame translations.

Table S3. High completeness proteomes of ciliate model organisms used for BUSCO 

marker comparison and alignment.
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