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Abstract

Transposable elements (TEs) have an important role in genome evolution but are challenging for 

bioinformatics detection due to their repetitive nature and ability to move and replicate within genomes. New 

sequencing technologies now enable the characterization of nucleotide and structural variations within 

species. Among them, TE polymorphism is critical to identify as it may influence species adaptation or 

trigger diseases. Despite the development of numerous bioinformatic programs, identifying the most 

effective tool is challenging due to non-overlapping results and varying efficiency across studies. 

Benchmarking efforts have highlighted some of the limitations of these tools, often evaluated on either real 

or simulated data. However, real data may be incomplete or contain unannotated TEs, while simulated data 

may not accurately reflect real genomes. This study introduces a simulation method generating data based on 

real genomes to control all genomic parameters. Evaluating several TE polymorphic detection tools using 

data from Drosophila melanogaster and Arabidopsis thaliana, our study investigates factors like copy size, 

sequence divergence, and GC content that influence detection efficiency. Our results indicate that only a few 

programs perform satisfactorily and that all are sensitive to TE and genomic characteristics that may differ 

according to the species considered. Using Bos taurus population data as a case study to identify 

polymorphic LTR-retrotransposon insertions, we found low-frequency insertions particularly challenging to 

detect due to a high number of false positives. Increased sequencing coverage improved sensitivity but 

reduced precision. Our work underscores the importance of selecting appropriate tools and thresholds 

according to the specific research questions.

Introduction

Recognized as being among the most important players in the evolution of genomes, transposable elements 

(TEs) represent a real challenge for bioinformatics approaches to detect them. TEs are repeated sequences 

present in almost all eukaryotic genomes. They have the ability to move and replicate, forming different 

families of similar but not always identical sequences. Several types have been described, depending on their 
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structure and their mode of transposition, varying both in genomic distribution and in sequence length 

(Wicker et al. 2007). For example, LTR-retrotransposons represent sequences of approximately 10 kb but 

DNA transposons such as MITEs (Miniature Inverted Repeats Transposable Elements) span only a few 

hundred base pairs. Moreover, TEs are not randomly distributed in the genome since their insertion patterns 

reflect a balance between selection pressure against their deleterious effects and genetic drift (Bourque et al. 

2018). As a consequence, TEs are likely to be found inserted into each other constituting nested insertions, 

which are particularly difficult to automatically identify (Bergman and Quesneville 2007). In addition, their 

proportion in genomes can vary greatly, ranging from a few percent as for example in the honeybee 

(Weinstock et al. 2006) to the major part of the genome as in maize (Schnable et al. 2009). Over the past 

twenty years, different bioinformatic tools have been developed allowing their annotation in assembled 

genomes (Lerat 2019). However, the rapid development of new sequencing technologies has made it 

possible to access numerous data from different individuals or populations in order to characterize the 

nucleotide and structural variations within a given species. Indeed, a reference genome for a given species is 

not sufficient to reflect the overall diversity of individuals. In particular, although TEs are generally 

regulated in a genome to prevent their activity, certain TE families can nevertheless continue to transpose 

throughout the life of an individual or may be reactivated due to some stress (Di Stefano 2022). It has been 

proposed that in Drosophila, the transposition rate is comparable to that of the nucleotide mutation rate 

(Adrion et al. 2017). More recently, according to the TE family, the transposition rate has been shown to be 

higher with an average of 4.93 × 10-9 insertions per site per generation corresponding to a new insertion in 

each new embryo (Wang et al. 2023). In humans, the most active TEs have a transposition rate of one 

insertion every 20 births (Cordaux and Batzer 2009). We can thus expect to find variations in the TE 

insertion pattern between individuals, which constitutes the TE polymorphism. Polymorphic TEs are 

particularly important to identify since they represent insertions that may be at the basis of 

species/population adaptation or triggering diseases. For example, numerous polymorphic TEs have been 

detected in sub-populations of the Chinese white poplar (Populus tomentosa) some of them being under 

positive selection while inserted in genes involved in stress, defense and immune responses (Zhao et al. 

2022). In humans, a specific polymorphic TE insertion is associated with the development of the Fukuyama 

type congenital muscular distrophy (Kobayashi et al. 1998). 

In order to search for polymorphic insertions, bioinformatics tools have been developed to answer 

specific questions and on particular organisms such as Drosophila, human or some plants (Lerat 2019). All 

these methods follow similar principles in their functioning which consist first in mapping sequenced reads 

to a reference genome and a set of reference TE sequences. Then two approaches, that can be combined, 

have been proposed to detect the presence/absence of TEs. The first is to consider discordant read pairs with 

one read mapping uniquely on a genomic location and the other mapping on different sequences of the same 

TE family. The second approach considers split reads, i.e., reads overlapping a junction between the genome 

and a TE insertion, with a part of the read mapping uniquely on the genome while the other part maps on 

several TE sequences. More than twenty programs have been developed during the past ten years (for an 
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exhaustive list, see https://tehub.org/), which makes it difficult for users to determine which program is the 

most appropriate or the most efficient. In particular, the results of these programs are often not entirely 

overlapping (Ewing 2015; Lerat et al. 2019). This makes it more difficult to identify true positives, especially 

in the case of non-reference insertions, which correspond to insertions not present in the reference genome 

but present in the analyzed read samples. Several attempts have been previously made to benchmark all these 

programs (Nelson et al. 2017; Rishishwar et al. 2017; Vendrell-Mir et al. 2019; Chen et al. 2023). These 

works showed that all these programs often are not as efficient as indicated in their original publication. 

However, these evaluations were made either on partial real data or on simulated data without controlling all 

parameters, or were targeting only particular TE types like for example the approach by Vendrell-Mir 

(2019). A problem with real data is that they may be only partial or may contain unannotated TE insertions 

that can blur the results. However, using partially simulated data is also problematic since it usually does not 

reflect in a realistic manner a real genome and does not allow to control all parameters. For example, the 

approach used by Rishiwar et al. (2017) consisted in the random insertions of consensus sequences from 

three human TE families into human reference chromosomes. In the work by Nelson et al. (2017) and Chen 

et al. (2023), they inserted one single TE from one of the four active families of the yeast at positions that are 

supposed to be biologically sound. These approaches are thus very biased toward the particularities of a 

single species. Hence, there are still several unanswered questions regarding the underperformance of certain 

tools, particularly in relation to specific characteristics of the studied genome and the TE sequences 

themselves that cannot be achieved using real data or simulated approaches used until now.

In this study, we have developed a simulation approach to produce data based on real genomes to 

allow the complete control of all genomic parameters. Using data generated for Drosophila melanogaster 

and Arabidopsis thaliana, we evaluated several TE polymorphic detection tools and investigated different 

characteristics like the copy size, the sequence divergence, the distance between copies, the GC content of 

the surrounding genomic regions, the Target Site Duplicate (TSD) size or the TE family that could explain 

why some insertions are better detected than others. Our results show that only very few of the different 

tested programs give satisfactory results and that all programs are sensitive to TE and genomic sequence 

characteristics that slightly differ according to the species considered. As an application case, we used Bos 

taurus real population data to identify polymorphic LTR-retrotransposon insertions. Low-frequency 

insertions appeared to be more challenging to detect due to a high proportion of false positives. Increasing 

sequencing coverage improved the sensitivity but at the expense of precision. Our study emphasizes the 

importance of selecting appropriate tools and thresholds depending on the scientific questions asked.

Material and Methods

Genomic data used for simulation

The sequence of the Drosophila melanogaster 2L chromosome version 6.18 in GenBank format was 

obtained from the NCBI GenBank database (accession number: NT_033779). The chromosome sequence is 
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23,513,712 bp long in which 3,519 genes and 919 TEs are annotated. For Arabidopsis thaliana, a GenBank 

file of the chromosome 1 was generated using the TAIR10 version of the gene and transposable element 

(TE) annotation in gff format available from the Arabidopsis Information Resource website 

(https://www.arabidopsis.org/). The chromosome sequence is 30,427,671 bp long in which 7,509 genes and 

7,135 TEs are annotated. The sequence of the chromosome 25 from Bos taurus was obtained from the 

GenBank database (version ARS-UCD1.3, accession number: GCF_002263795.2). The chromosome, that is 

42,350,435 bp long, contains 1,006 genes but no TEs have been previously annotated. We thus determined 

the position of endogenous retroviruses (ERV) using RepeatMasker version 2.0.3 with cattle ERV consensus 

sequences from Repbase version 29.03 (https://www.girinst.org/). ERV insertions from four ERV families 

were used for the simulations: two class I ERV families (ERV1-1_BT and BtERVF2) and two class II ERV 

families (ERV2-2_BT and ERV2-3_BT). 

Simulation tool replicaTE

We have developed a simulation tool based on real data. This tool is implemented as several python3 scripts 

that need to be run successively, using as a starting point a GenBank file (Figure 1). In summary, we 

consider three types of sequences (genes, TEs and intergenic regions). The genes are cleaned up from any TE 

insertions meaning that any TE inserted inside the genes, given the annotation, are removed from the gene 

sequences. Intergenic regions are simulated to remove any misannotated TEs and based on the real intergenic 

regions with respect to their GC content and length. The real characteristics of TE insertions in the genome 

(number of copies, size of copies, %divergence, etc.) are used to simulate new TE sequences. These TE 

sequences are randomly assigned to the intergenic regions. Finally, all three parts are reassembled to create a 

complete simulated genome and a deleted simulated genome in which half of the TE insertions are removed. 

The tool is available as a git repository (https://github.com/e-lerat/replicaTE). For the simulation of the three 

species, default parameters for each module were used.
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Figure 1: Workflow of the simulation tool ReplicaTE. Each step corresponds to the different scripts. In gray are 

indicated the genes, in blue and red are indicated the TE insertions, a given color corresponding to a given TE family. 

The simulated TE copies are represented in orange and light blue.

deleTE.py

This script allows us to get the characteristics of each element (genes, intergenic regions, and TEs) for the 

next steps and to generate a simulated genome without TEs. It takes as an input a GenBank file from which it 

will extract the annotations. It outputs multiple files which can then be used as input by the other codes (see 

results for the description of these files). The size of the simulated intergenic regions are drawn from an 

exponentiated Weibull distribution constructed from the computed gene density (number of genes per Mb) 

with a minimal size of 200 pb. The GC content of the simulated intergenic regions are drawn from a 

truncated normal law fitted on the observed %GC of the chromosome sequence, with values between 0 and 

100%. 

generaTE.py

This script generates TE copies based on different characteristics (copy number, length, Target Site 

Duplication (TSD) length, strand). It attributes an intergenic region to each copy to be inserted into with the 

possibility to have nested insertions. For each family, a pool of copy sizes is drawn in a truncated 

exponential law, with values between 80 bp and 102.5% of the largest sequence of the family to take into 

account potential small insertions, called the “ancestral” sequence. The sequence divergences of the copies 

compared to the “ancestral” sequence are drawn from a truncated normal law distribution, with values 

between 0 and 20% (mean = 10 and standard deviation = 4). By default, the copy number corresponds to the 

observed copy number in the real chromosome. It is also possible to simulate the copy number. In that case, 

it is randomly drawn from an exponentiated Weilbull distribution fitted on the data. The TSDs have a length 
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between 0 and 8 bp and are attributed for a given family when the option is specified.

inseraTE.py

This script associates the cleaned genes, the simulated TEs and the simulated intergenic regions to produce a 

genomic sequence. The TE copies are randomly inserted into their attributed intergenic region. The insertion 

can be ‘normal’ or ‘nested’ (inserted into a previous TE) and multiple nested events can arise. The complete 

simulated chromosome is provided in fasta format. A “deleted” version is also generated, in which half of the 

TE copies are not present.

Short-read simulation

The different tested tools all use short-read sequences as an input. We thus have generated short reads based 

on either the “complete” or the “deleted” simulated chromosomes using the program ART Version 2.1.8 

(Huang et al. 2012). This program produces theoretical reads expected by an NGS technique on a given 

genome. For this analysis, we generated paired-end Illumina reads of 150 bp (with a fragment size of 300 bp) 

using three different coverages (10X, 50X and 100X). Only 15X short reads were produced for B. taurus to 

reflect the landscape of the real cattle data coverage in the public databases.

Polymorphic TE detection tools 

Reference and non-reference insertions were detected in the simulated short reads using the either the 

“complete” or the “deleted” simulated genomes as a reference with the 12 programs included in 

McClintock2 (Nelson et al. 2017, Chen et al. 2023) in addition to TEPID (Stuart et al. 2016) and Jitterbug 

(Hénaff et al. 2015) programs. All the programs were run with default parameters. The read alignments on 

the reference genomes were made using either bwa (Li 2013) and bowtie2 (Langmead and Salzberg 2012) as 

implemented in McClintock2 with regard to the internal specificity of each tool. TEPID internally uses 

bowtie2 and yaha (Faust and Hall 2012). In the case of Jitterbug, the read alignments were performed using 

bowtie2. The number of True Positives and False Negatives were computed from the results of the different 

programs using two homemade perl scripts (test_position_ref.pl and test_position_nonref.pl) available in the 

git repository (see below). 

Statistical analyses

All statistical tests were performed using the R software version 3.6.3 (2020-02-29) (R Core Team 2017). 

The programs were evaluated according to different metrics described below. 

Recall (sensitivity): it corresponds to the proportion of True Positives (TP) among all the TE insertions 

present in the reference genome. It is computed as: 
TP

TP+FN

Precision: it corresponds to the proportion of good answers among the predicted TE insertions. It is 
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computed as: 
TP

TP+FP

F-score: it corresponds to the harmonic mean of the recall and the precision. It is computed as:

2
recall . precision
recall+ precision

To compute these different metrics, it is necessary to assess the number of TPs among the identified TE 

insertions proposed by each program, using two homemade perl scripts “test_position_ref.pl” and 

“test_position_nonref.pl” (available in the git repository). We considered an insertion to be a TP when the 

program associates the same TE family name and a position that is close to the real position, with a certain 

margin of error, disregarding the strand of the prediction. More specifically, we considered four different 

margins of error to determine whether the position was correct or not which are 5 bp, 20 bp, 100 bp and 150 

bp. The False Negatives (FN) correspond to insertions present in the reference dataset that were not detected 

by the program and the False Positives (FP) correspond to predicted insertions that do not correspond to 

insertions present in the reference dataset.

False positive rate estimation in real data of Bos taurus

Endogenous retroviruses (ERV) insertion detection was performed using TEFLoN (Adrion et al. 2017) with 

default parameters on 10 WGS short-read data samples from various individuals of Bos taurus (accession 

numbers from SRA database are provided in Supplementary Table S1). A homemade python script 

(FP_TP_teflon_insertion.py) available in the git repository, was applied to compute the proportion of TPs, 

FPs and FNs among the identified insertions. Insertions found in common with the reference were 

considered as TPs or FPs compared to the ERV annotation of the B. taurus ARS-UCD1.3 assembly. 

Insertions found in the samples but not in the reference genome were considered as TPs if they were also 

present in the variant output file obtain from a variant calling analysis on long-read data from the same 

samples (accession numbers from SRA database are provided in Supplementary Table S1) using the call 

function of pbsv version 2.6.2 with default parameters (https://github.com/PacificBiosciences/pbsv). In both 

cases, we considered insertions as TPs if the program also associated the correct ERV family name and with 

a correct position within 20 bp of error margin. 

Results

Chromosome simulation and evaluation approach

The simulation tool replicaTE was used on the chromosome 2L of D. melanogaster and on the chromosome 

1 of A. thaliana (all generated files are available as supplementary data). The first script, deleTE.py, produces 

different output files. Among them, the “gene_clean_tab.csv” file contains the real genes without any 

annotated internal TE insertions. The “intergenic_sim_tab.csv” file contains the simulated intergenic regions 
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with their length and %GC. The “stat_TEs_tab.csv” contains a sequence corresponding to the longest real TE 

sequence (that will be considered as the “ancestral” TE sequence) of a given family that will be used to 

generate all simulated TE copies and the number of copies for each family, that corresponds to the real 

number of annotated copies in the considered chromosome. These two last files are used in the second script, 

generaTE.py, to simulate the TE copies. It produces a fasta file containing the simulated sequences 

(“simulated_TEs.fas”) and a text file (“param_TEs_tab.csv”) containing all the information regarding each 

TE family (length of each copy, sequence divergence of each copy compared to the “ancestral” TE sequence, 

the associated intergenic region, the strand and the TSD size). These two files, in addition to the 

“gene_clean_tab.csv” and the “stat_TEs_tab.csv” files, are used in the third script inseraTE.py. It produces, 

among other files, the two simulated genomes in fasta format and the files “annot_TEs.tsv” and 

“annot_TEs_del_1” containing all information regarding each TE copy (positions, length, divergence, 

insertion type (nested or not), strand, TSD size, distances to the closest TE insertions, and the GC content of 

the flanking genomic regions). 

For each chromosome, we thus have all information about the inserted copies in addition to their 

precise positions. These different parameters will be used to evaluate the tested programs. In particular, we 

will be able to determine if particular factors relative to the TE sequences (size, distance to other copies, 

divergence, TSD size) or to their genomic region of insertion (%GC) may have an influence on whether they 

are correctly detected or not by the tested programs.

In our evaluation approach, the “complete” simulated chromosome and the “deleted” simulated 

chromosome can be used alternatively as reference genome or as sample genome in order to evaluate the 

possibility to identify reference / absent insertions or non-reference insertions. Indeed, as described on Figure 

2, when using the “complete” simulated genome as a reference, the short reads will be generated using the 

“deleted” simulated genome, in which half of the TE insertions are missing. This will allow us to evaluate 

the capacity of the programs to detect both reference and absent insertions. Alternatively, if the “deleted” 

simulated genome is used as a reference and the “complete” simulated genome is used to generate short 

reads, then it will allow us to evaluate the capacity of the programs to detect TE insertions not present in the 

reference.

Figure 2: Evaluation approach. The black rectangles correspond to genes. The orange and light blue circles 
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correspond to TE copies from two different families. The reads simulated on the “deleted” simulated genome will be 

mapped to the “complete” simulated genome, which will allow to identify reference and/or absent TE insertions. The 

reads simulated on the “complete” simulated genome will be mapped to the “deleted” simulated genome, which will 

allow us to identify non-reference TE insertions.

Using the D. melanogaster and A. thaliana data, we have generated two simulated chromosomes for 

each species. For Drosophila, the “complete” simulated chromosome, which is 23,298,325 bp long, contains 

790 TEs whereas the “deleted” simulated chromosome contains 400 TEs. In the case of A. thaliana, the 

“complete” simulated chromosome, which is 37,444,832 bp long, contains 6,324 TEs whereas the “deleted” 

simulated chromosome contains 3,132 TEs. Knowing exactly the positions and name of each insertion, it is 

thus possible to compute the number of True Positives (TP), False Positives (FP) and False Negatives (FN) 

for each program allowing to determine their efficiency. Additionally, since we have all information about 

the different insertions for which we can control all associated parameters (size, distance, %GC etc.), it will 

be possible to compare the characteristics of the TP to those of the FN that could indicate any detection bias 

in the tested programs. 

Tests of the polymorphic TE detection programs

More than 20 programs have been proposed during the last 10 years to identify polymorphic TE insertions. 

However, many of them were not possible to evaluate in this analysis. Some programs were no longer 

available to be retrieved. Other programs were not flexible about the reference genome that can be used, 

unless modifying significantly the source code. We also did not test T-lex3 (Bogaerts-Márquez et al. 2020) 

since it cannot detect TE insertions present in the sample but not the reference, but only presence/absence of 

annotated TE insertions in a reference genome. 

We have finally tested 14 programs for which it was possible to use customized reference genomes 

(TEMP (Zhuang et al. 2014), TEMP2 (Yu et al. 2021), ngs_te_mapper (Linheiro and Bergman 2012), 

ngs_te_mapper2 (Han et al. 2021), PoPoolationTE (Kofler et al. 2012), PoPoolationTE2 (Kofler et al. 2016), 

RetroSeq (Keane et al. 2013), RelocaTE (Robb et al. 2013), RelocaTE2 (Chen et al. 2017), TEBreak 

(Schauer et al. 2018), TEFLoN (Adrion et al. 2017), TE-locate (Platzer et al. 2012), TEPID (Stuart et al. 

2016), and Jitterbug (Hénaff et al. 2015)). The programs are designed to find non-reference insertions (when 

compared to a reference genome) and, except Jitterbug, TEBreak and RetroSeq, to find also shared insertions 

(between a reference genome and a genome under investigation). The programs have been developed on 

particular organisms but sometimes tested on several of them (human, Drosophila, Arabidopsis, rice, mouse 

and Daphnia).

Detection of reference insertions

We have first evaluated the capacities of the programs to identify reference insertions, that is to say, 

insertions present in the reference genome and in the genome from which the reads are produced. For the D. 
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melanogaster simulated chromosome, it represents 400 insertions and in A. thaliana, it represents 3,133 

insertions. In Figure 3, the total number of reference insertions found by each program is represented for 

each species, independently of the identification of true positives (TP). For TEPID, this number has been 

estimated by subtraction since the program provides information about the absence of reference insertions. 

As we can see, globally, the increase of coverage has little influence on the total number of reference 

insertions detected, except for PopoolationTE and PopoolationTE2, which do not find many insertions at 

10X. For both species, the TEMP and TEMP2 programs, which have the same results, find far more 

reference insertions than expected. This may be explained by the way McClintock2 reports reference 

insertions for these methods since TEMP/TEMP2 find evidence for the absence of reference insertions then 

McClintock2 computes the complement of the set of “non-absent” reference annotation, which leads to 

increase the number of reference TE insertions. Other programs find less reference insertions but to a lesser 

extent in A. thaliana (TEPID) and in D. melanogaster (TEFLoN for all coverage and PoPoolationTE2 for 

coverage 50X and 100X). PopoolationTE2, TEFLoN and ngs_te_mapper2 (for A. thaliana) and 

PopoolationTE, ngs_te_mapper2 and TEPID (for D. melanogaster) find a number of reference insertions 

close to what is expected. All the other programs find no or few reference insertions.

Figure 3: Number of reference insertions detected by each program. On the left panel is represented the number of 

reference insertions found for D. melanogaster and on the right panel for A. thaliana, for the three different read 

coverages. The dashed lines correspond to the expected number of reference insertions in each species; * indicate 

programs that are not designed to identify reference insertions. Some lines are overlapping and thus are not visible on 

the figures.

We have then determined among all these insertions the number of False Positives (FP), False 

Negatives (FN) and True Positives (TP) in order to compute various metrics to evaluate the programs. TPs 

have been identified according to both the capacity of the program to identify the right TE family and 
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according to the localization prediction with several margin of errors (see Material and Methods). Figure 4 

represents the different metrics for both species using a localization prediction with a margin of error of 20 

bp (see supplementary figures S1, S2 and S3 for all cutoffs).

Figure 4: Evaluation metrics for the two species for the three read coverages for the reference insertions with a 

precision localization of 20 bp; * indicate programs that are not designed to identify reference insertions.
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We have retained this particular margin of error since at 5 bp all programs do not perform well whereas at 

100 bp and 150 bp the efficiency of the programs is not improved. The recall metrics indicate the number of 

good answers among all the possible predictions. In our case, it indicates for each program the number of 

TPs among all the reference TE insertions that should be detected. For both species, five programs give the 

best results for these metrics: TEMP, TEMP2, PoPoolationTE2 (starting at 50X), ngs_te_mapper2 and 

TEFLoN, with recall values of more than 0.5. The other programs find few or no TP among all the TE 

insertions that can be found given a localization window of 20 bp. The precision gives the number of good 

answers among all the results proposed by the programs. According to the species, the tools do not have the 

same results. For D. melanogaster, ngs_te_mapper2 has the best results for these metrics, whereas it is 

ngs_te_mapper for A. thaliana. In order to take into account both metrics, we have computed the Fscore. For 

both species, five programs give the best results: ngs_te_mapper2, PoPoolationTE2, TEMP, TEMP2, and 

TEFLoN. However, according to the species, the best program is not the same: ngs_te_mapper2 performs 

better for D. melanogaster when it is PoPoolationTE2 for A. thaliana.

We have observed the overlap of TPs between the top four programs for each species (Figure 5). The 

results show that 66.8% for D. melanogaster and 61.9% for A. thaliana of the TPs are found by the four 

programs. Among the remaining TPs, a majority is found in common by at least three programs. Only 

TEMP/TEMP2 find a significant proportion of unique TPs (3.5% for D. melanogaster and 6.1% for A. 

thaliana).

Figure 5: Percentage overlap of TP reference insertions found by the programs having the best Fscores.

Detection of non-reference insertions

We have then evaluated the capacity of the programs to find insertions not present in the reference genome. 

They correspond to 390 insertions in the simulated D. melanogaster chromosome and 3,192 insertions in the 

simulated A. thaliana chromosome. All programs find a total number of non-reference insertions less than 
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what is expected (Figure 6). The sequence coverage has an impact on the total number of non-reference 

insertions found for the majority of the programs. In particular, a coverage of 10X seems to be insufficient 

for most programs. Only ngs_te_mapper2 and TEBreak are not very impacted.

Figure 6: Number of non-reference insertions detected by each program. On the left panel is represented the 

number of non-reference insertions found for D. melanogaster and on the right panel for A. thaliana, for the three 

different read coverages. The dashed lines correspond to the expected number of non-reference insertions in each 

species. 

We have then determined among all the non-reference insertions that are detected which ones are TP 

according to the same rationale presented above and in the material and methods section. Figure 7 represents 

the different metrics for both species using a correct localization prediction at 20 bp (see supplementary 

figures S4, S5, and S6 for all cutoffs). Globally, the recall for each program, and for both species, is not very 

high, meaning that many TPs are missed by the programs. Three of the programs give the best results 

considering 50X of coverage (TEBreak, PoPoolationTE2 and ngs_te_mapper2). The precision metric on the 

contrary shows that for most programs, TPs are numerous among all the results produced, especially for D. 

melanogaster. The Fscore shows similar results between the two species with four programs having the best 

results: TEBreak, ngs_te_mapper2, PopoolationTE2 (starting at 50X) and RetroSeq (starting at 50X).
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Figure 7: Evaluation metrics for the two species for the three read coverages for the non-reference insertions with a 

precision localization of 20 bp.

The overlapping of the TP detected by the six best programs accounts for only 10.9% of the TPs for 

D. melanogaster and 10.5% of the TP for A. thaliana (Figure 8). PopoolationTE2 and ngs_te_mapper2 each 

identify 6.5% and 4.4% unique TPs in D. melanogaster, and 2.1% and 2.9% respectively in A. thaliana. It 
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should be noted that 11.4% of TPs are found by all the programs except TEFLoN in A. thaliana. For D. 

melanogaster, 10.6% of TPs are found in common for all programs except TEMP/TEMP2.

Figure 8: Percentage overlap of TP non-reference insertions found by the programs having the best Fscores.

Comparison of the characteristics between True Positives and False Negatives

Since we know with accuracy the characteristics of all insertions present in the two reconstructed 

chromosomes for both species, it is possible to determine whether some of them may have an impact on the 

fact that an insertion is detected or not by the programs. We have considered the results of the programs 

having the best Fscores for a coverage of 50X and with enough identified TPs considering a localization 

precision of 20bp to allow statistical analyses without bias.

First, we have considered the reference insertions in both species (Table 1 and Table 2, Wilcoxon 

tests). The results show that the TPs have significantly smaller sizes than FNs for all programs (expected for 

ngs_te_mapper2 with D. melanogaster). Moreover, the distance to the closest TE insertions is also important 

since it is significantly larger for TPs when compared to FNs, for all programs and for the two species. 

Additionally, in A. thaliana, the %GC of the flanking regions of TPs are significantly more GC rich than 

those around FNs. To summarize, the programs better detect reference insertions that are small and largely 

distant from other TE insertions.

Table 1: characteristics of TPs vs FNs for reference insertions for D. melanogaster (400 reference insertions in total)

ngs_te_mapper2

(279 TPs)

PoPoolationTE2

(307 TPs)

TEFLoN

(274 TPs)

TEMP /TEMP2

(339 TPs)
TPs FNs TPs FNs TPs FNs TPs FNs

Mean insertion size (bp) 1,126.5 1,800.4 1,096.5 2,105.7 990.6 2,072 1,086.

2

2,702.3

NS 0.011116 1.696e-05 8.091e06
%divergence to the 

reference

9.593 11.092 10.070 9.958 10.054 10.02 10.05 10.013
0.002068 NS NS NS
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Mean distance to the 

nearest insertions (bp)

31,427 21,329 32,127.3 15,918 30,561.1 23,630 30,332

.1

17,416

1.627e-06 2.254e-10 0.0008189 5.21e-05

%GC of 

flanking 

regions

5’ 40.29 40.81 40.39 40.57 40.40 40.54 40.57 40.03
NS NS NS NS

3’ 40.57 40.45 40.68 39.82 40.61 39.65 40.81 39.76
NS 0.02122 NS NS

Mean TSD size (bp) 3.62 3.967 3.713 3.761 3.752 3.664 3.735 3.667
NS NS NS NS

Table 2: characteristics of TPs vs FNs for reference insertions for A. thaliana (3,133 reference insertions in total) 

ngs_te_mapper2

(2,019 TPs)

PoPoolationTE2

(2,191 TPs)

TEFLoN

(1,799 TPs)

TEMP /TEMP2

(2,506 TPs)
TPs FNs TPs FNs TPs FNs TPs FNs

Mean insertion size (bp) 978 1894.7 1043 1917 950.7 1781.8 1013 2465
<2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

%divergence to the reference 9.70 10.33 9.91 9.93 9.81 10.1 9.88 10.1
1.435e-05 NS NS NS

Mean distance to the nearest 

insertions (bp)

5,684 2,455.5 5,494 2,296.3 5,525 3,202.5 5,156 2,059

<2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

%GC of 

flanking 

regions

5’ 34.91 34.15 34.97 33.96 34.93 34.35 34.74 34.58
 0.04939 0.006899 0.005606 NS

3’ 35.14 33.89 35.11 33.59 35.09 34.28 34.90 33.85
5.771e-06 2.559e-06 0.002174 0.03816

Mean TSD size (bp) 4.02 4.17 4.08 4.08 4.24 3.86 4.08 4.05
NS NS 0.0003743 NS

In the case of the non-reference insertions (Table 3 and Table 4, Wilcoxon tests), the results show 

slightly different characteristics. For both species and almost all programs, the percentage of divergence of 

TPs compared to its ancestral sequence is significantly lower than for the FNs. Again, the distance of TPs to 

the closest TEs is larger than for the FNs, especially for A. thaliana but also for D. melanogaster for three 

programs (TEFLoN, RetroSeq, and TEBreak). Also, the size of TSD is significantly larger for TPs than for 

FNs for both species and for most of the programs. Finally, in A. thaliana, the %GC of the flanking regions 

of TPs are significantly more GC rich than those around FNs. To summarize, the programs better detect non-

reference insertions that are not too divergent from the consensus TE used to identify them (so likely to be 

recent insertions), largely distant from other TE insertions and with specific TSD size. 

Table 3: characteristics of TPs vs FNs for non-reference insertions for D. melanogaster (390 non-reference insertions in 

total) 

ngs_te_mappe

r2

(224 TPs)

PoPoolationTE

2

(257 TPs)

TEFLoN

(135 TPs)

TEMP2

(119 TPs)

RetroSeq

(186 TPs)

TEBreak

(248 TPs)

TPs FNs TPs FNs TPs FNs TPs FNs TPs FNs TPs FNs
Mean insertion 

size (bp)

1,257.

8

1,518 1,43

9

1,230.5 636.9 1,756

.6

1,50

3

1,308

.5

1,061.

1

1,649 1,277.

4

1,527

NS NS 3.875e-08 NS 0.01601 NS
%divergence to 9.22 11.12 9.84 10.387 10.12 9.975 7.11 11.31 9.47 10.53 9.740 10.53
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the reference 1 2 1 7
4.227e-07 NS NS < 2.2e-16 0.003103 0.02933

Mean distance to 

the nearest 

insertions (bp)

27,94

6

26,61

2

27,9

67

26,238 30,09

5

25,93

7

28,5

38

26,86

9

30,05

4

24,93

0

30,14

7

22,513

NS NS 0.03794 NS 0.0136 0.001241

%GC 

of 

flanki

ng 

region

s

5’ 40.59 40.50 40.6

7

40.29 40.70 40.48 40.7

4

40.47 40.72 40.39 40.71 40.23

NS NS NS NS NS NS
3’ 40.15 40.80 40.3

8

40.50 40.21 40.53 40.1

9

40.52 40.25 40.58 40.37 40.50

NS NS NS NS NS NS

Mean TSD size 

(bp)

4.045 3.03 3.64

2

3.561 3.956 3.433 3.89

9

3.489 3.774 3.468 3.903 3.106

1.63e-06 NS 0.002307 NS 0.04023 5.961e-05

Table 4: characteristics of TPs vs FNs for non-reference insertions for A. thaliana (3,192 non-reference insertions in 

total) 

ngs_te_mappe

r2

(1,564 TP)

PoPoolationTE

2

(1,558 TP)

TEFLoN

(740 TP)

TEMP2

(826 TP)

RetroSeq

(1,323 TP)

TEBreak

(1,684 TP)

TPs FNs TPs FNs TPs FNs TPs FNs TPs FNs TPs FNs
Mean insertion 

size (bp)

1,358.

1

1,326.

8

1,351

.1

1,334 1,18

7

1,388

.9

1,272

.4

1,366

.5

1,313

.0

1,363 1,37

0.4

1,310.6

NS NS NS NS NS NS
%divergence to 

the reference

9.589 10.43 9.668 10.355 10.1

01

9.995 7.149 11.02

2

9.53 10.37 9.76

5

10.304

5.138e-10 2.619e-07 NS  < 2.2e-16 6.297e-10 7.778e-05
Mean distance to 

the nearest 

insertions (bp)

5,498 3,853.

5

5,682 3,684.3 5,40

2

4,435 5,280 4,442 5,345 4,173 5,36

6

3,870

< 2.2e-16 < 2.2e-16 8.975e-09 3.313e-09 < 2.2e-16 < 2.2e-16

%GC 

of 

flanki

ng 

region

s

5’ 35.43 34.03 35.44 34.04 35.4

3

34.61 35.36 34.61 35.61 34.12 35.4

7

33.84

3.734e-12 5.535e-10 0.0001875 0.004747 4.639e-14 1.087e-15
3’ 35.23 34.24 35.14 34.32 35.1

8

34.60 35.27 34.54 35.20 34.41 35.1

9

34.23

1.352e-07 6.72e-06 0.002374 0.0003581 1.399e-06 1.81e-07

Mean TSD size 

(bp)

4.503 3.568 4.15 3.907 4.78

9

3.795 4.063 4.013 4.044 4.013 4.40

4

3.603

< 2.2e-16 0.01874 < 2.2e-16 NS NS 7.709e-15

Application case: detection of endogenous retroviruses polymorphic insertions in real cattle population 

data

Although a comprehensive understanding of TEs could have an agricultural interest in improving animal 

breeding, few TE studies have been conducted on livestock species and more particularly on cattle. We have 

decided to use cattle as a mammalian genome example to study a subpart of the TEs, the endogenous 

retroviruses (ERV) insertions. We propose hereafter a workflow to perform such an analysis.
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Find the best configuration using simulated data

The study of simulated D. melanogaster and A. thaliana chromosomes has shown that the performance of 

the programs to detect polymorphic TE insertions are different depending on the studied species. In order to 

choose the best tool to use, the same pipeline as before has been applied to Bos taurus to further detect 

polymorphic insertions in short-read data. Two simulated chromosomes were generated using ReplicaTE 

from chromosome 25. In this chromosome, 899 random CDS sequences were extracted and 900 intergenic 

regions were generated. The obtained “complete” simulated chromosome is 25,638,271 bp long including 

936 ERVs whereas the “deleted” simulated chromosome contains 474 ERVs. The “deleted” simulated 

chromosome has been used as a reference and the “complete” simulated chromosome has been used to 

generate simulated short reads in order to evaluate the capacity of the programs to detect the 462 reference 

insertions and 474 non-reference insertions. We have determined among the detected insertions the number 

of False Positives (FPs), False Negatives (FNs) and True positives (TPs) to compute the same metrics as for 

D. melanogaster and A. thaliana (see material and methods section).

Figure 9 represents the Fscore metric for the detection of ERV reference and non-reference 

insertions using each of the tested programs (see supplementary figure S7 for recall and precision metrics). 

Similar results are found in cattle compared to the other species but the best programs slightly differ. For the 

reference insertions, TEMP2 and TEFLoN give the best results with a Fscore higher than 0.80. For the non-

reference insertions, TEFLoN and TEBreak are the two programs giving the best results with respectively a 

Fscore of 0.82 and 0.66. In conclusion TEFLoN appears to be the best performing tool to use on B. taurus 

data.
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Figure 9: Performance evaluation of McClintock programs on Bos taurus simulated data. The detection of the 

reference and non-reference insertions is represented in the upper and lower panels respectively. INT and LTR 

consensus were provided separately. The performance of the programs has been evaluated with the Fscore metric. * 

indicate programs that are not designed to identify reference insertions.

Repbase consensus sequences are largely used for TE annotation using RepeatMasker. For LTR-

retrotransposons, the LTR sequences and the internal part are often split into two separate sequences. 

Different types of input sequences have been evaluated to detect ERV insertions in B. taurus simulated data 

using TEFLoN (Figure 10A): i) only the LTR sequences, ii) only the internal sequences, iii) the LTR and 

internal sequences separately, iv) the LTR and internal sequences concatenated for each ERV family 

sequence, and v) the LTR, the internal and the concatenated family sequences together to test redundancy. 

Figure 10B represents the Fscore metric for each input sequence (see supplementary figure S8 for recall and 

precision metrics). The use of the internal part alone is not working well contrary to other configurations 

involving both LTR and internal parts. The use of internal and LTR parts separately gives satisfying results 

for reference insertions but is less efficient for non-reference insertions detection. The input giving the best 

results is the one with the concatenated family sequences.

We have used four ERV families to generate the simulated chromosomes from ERV class I and II 

clades. The figure 10C shows how the different ERV families have been detected by TEFLoN. Each family 

19

503
504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

19



seems to have its own detection characteristics that might correspond to sequence characteristics identified 

for D. melanogaster and A. thaliana. 

Figure 10: Impact of ERV input consensus sequences and ERV families on insertion detection with TEFLoN on 

Bos taurus simulated data. A) ERV copy genomic structure and the different input consensus sequences tested on 

cattle simulated data to detect ERV copies, B) Fscores (Performance) of TEFLoN with the different input consensus 

sequences, C) Fscores (Performance) of TEFLoN using the detail of each ERV family when using the consensus 

sequences labeled “INT LTR fam”. The detection of reference insertions is represented with circles and the detection of 

non-reference insertions with triangles.

Detection of insertion polymorphism in real population data

We have used the previously selected tool TEFLoN to analyze 10 cattle WGS short-read datasets. The 

detected insertions have been compared to the ERV annotation of the reference assembly and to the output of 

a variant calling analysis performed on long-read data from the same samples. Figure 11 represents the 

Fscores obtained for these samples and the correlation between the tool performance and the sample short-

read depth sequencing. More than 80% of the expected insertions are detected, on average, in the 10 samples. 

ERV insertions also present in the reference genome are significantly better recognized than the non-

reference insertions (Wilcoxon test, p = 1.1e-05). Among the insertions common with the reference, almost 

no FP are identified. For insertions not present in the reference, almost a hundred of FP are detected 

representing from 30 to 40% of the non-reference insertions detected in each sample. The tool performances 

are also more homogeneous between the samples for the detection of reference insertions than for the non-
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reference ones mainly due the short-read coverage differences across samples. A higher coverage improves 

the detection of insertions but also increases the detection of FPs (see supplementary figure S9). 

Furthermore, samples with coverage lower than 10X have a drop in detection rates compared to the others. It 

appears that 10X is the minimum coverage to reliably detect a sufficient number of ERV insertions. Finally, 

the comparison between the analysis on simulated and real data shows better results in detecting reference 

insertions in real data compared to simulated data, with median Fscores of 0.97 and 0.81 respectively. On the 

contrary, TEFLoN is less effective in identifying non-reference insertions in real data compared to simulated 

data with median Fscores of 0.75 and 0.82 respectively (Figure 11).

Figure 11: Detection of ERV insertions in 10 Bos taurus samples with TEFLoN. A) Fscores for the detection of 

ERV insertions in the 10 samples. The red dots indicate the Fscores obtained with TEFLoN on cattle simulated data, B) 

Impact of the short-read depth sequencing on the number of detected insertions. Depth is computed on trimmed reads 

mapped on the cattle reference genome.

 

Discussion

In this work, we have developed an approach to simulate TE insertions from a known biological context. The 

data obtained made it possible to test in a reliable and controlled manner 14 programs for the detection of 

polymorphic TEs. For the first time in the benchmarking of these approaches, it is possible to show why 

certain insertions are better detected than others by the different programs. Especially, reference and non-

reference insertions show different biases. Reference insertions are more correctly detected if they are small 

and largely distant from other TE insertions. In the case of non-reference insertions, they need to be similar 

from the consensus or reference TE used to identify them, very distant from other TE insertions and with 

specific TSD size.

Generally, full data simulation approaches are often used to test polymorphic TE detection programs. 

They make it possible to perfectly control all the information. The major problem is that often these 
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simulated data do not completely reflect the biological reality. In order to overcome this problem, we have 

proposed here an approach that uses real data as a starting point and simulates sequences using the biological 

information of the organism of interest. We thus made the choice to completely simulate the intergenic 

regions in order to free ourselves from possible bad TE annotations. However, these intergenic regions are 

not completely randomly generated sequences. In particular, the %GC of these sequences must correspond to 

what is observed in the analyzed genome. The GC content may be an important factor influencing the 

detection since it may be a caveat in steps of mapping (Donato et al. 2021). Similarly, the reinserted 

sequences of the TEs are not the true sequences but come from a real insertion representative of each family 

contained in the analyzed genome. This allows us to control not only the position of the insertions but also to 

know with accuracy other information that may play a role on whether an insertion is detected or not. Thus, 

among the parameters which are controlled, the size of the insertions, the sequence divergence with respect 

to the reference element, the distance to the closest TEs and the size of TSD are perfectly known for each 

insertion. It thus allows us to shed light on precise sequence characteristics rather than limiting tests on 

specific types of TEs, which is sometimes an approach used to benchmark TE polymorphic tools (Nelson et 

al. 2017; Vendrell-Mir et al. 2019; Chen et al. 2023). Our approach seems to be a good compromise between 

the use of complete simulation and real but partial biological data with either consensus TE sequences or 

using only a small set of TE families. However, a number of improvements can be considered with our 

approach. Currently, only one chromosome is simulated. It could be interesting to simulate several 

chromosomes and in particular, to generate populations of chromosomes in order to mimic what can be 

observed in a natural population. Additionally, the tool is currently limited regarding the number of TE 

insertions that can be inserted. Thus, for a human chromosome for example, the tool works only with a 

limited number of TE families. The input format of the reference chromosome could be modified to support 

bed annotation files along with a fasta file containing the chromosome sequence, rather than one genbank 

file. However, in any case, TE annotations for the reference species are mandatory to allow the different 

programs to be used to identify reference insertions.

Our results show that all the programs tested here are far from obtaining results as good as 

announced in their original publication. For some of them, read coverage strongly impacts the ability to find 

non-reference insertions, as has already been shown (Rishishwar et al. 2017; Chen et al. 2017; Vendrell-Mir 

et al. 2019) but this is only true up to 50X coverage from which a plateau is reached. Moreover, the results 

are not as good whether we are interested in the reference insertions (present in the reference genome) or the 

non-reference insertions (present only in the read samples). Indeed, non-reference insertions are less 

correctly detected than the reference insertions, an observation that was also made by the only other 

benchmark evaluating non-reference insertion detection (Vendrell-Mir et al. 2019). Globally, the Fscores are 

better in the first case. However, the values obtained for the best programs do not indicate exceptional 

performance. Indeed, for reference insertions, the best programs ngs_te_mapper2 and popoolationTE2 have 

Fscores below 0.8. The other programs (PopoolationTE2, TEFLoN, TEMP, and TEMP2) show values 

around 0.6. For non-reference insertions, the best programs (TEBreak, ngs_te_mapper2, popoolationTE2 and 
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RetroSeq) have values hovering around 0.6. It is important to note that some programs are more successful in 

finding reference insertions than non-reference insertions, and vice versa. TEFLoN, TEMP and TEMP2 

show poorer performance in finding non-reference insertions compared to reference insertions. Overall 

ngs_te_mapper2 and PoPoolationTE2 give consistent results for the two types of insertions. If we compare 

the results for the two species, there are some notable differences for the detection of reference insertions. 

Ngs_te_mapper2 gives better results with D. melanogaster while the best program is PoPoolationTE2 (at 

50X and 100X) for A. thaliana. In the case of non-reference insertions, all programs give comparable results 

for the two species, although working a little less well in the case of A. thaliana. It is to note that RelocaTE2 

was proposed as the best performing tool to identify non-reference insertions in yeast genomes (Chen et al. 

2023), which indicates that the choice of the best performing tool needs to be assessed according to the 

species under study.

Given that the programs produce many false positives (FPs), an approach allowing to optimize the 

identification of the true positives (TPs), in the absence of comparison, is to use several tools at the same 

time to retain only the insertions detected in common. This approach has been used for the analysis of many 

natural populations of D. melanogaster (Lerat et al. 2019). However, the two tools used, popoolationTE2 and 

TIDAL, showed little overlap in their results. We observed the overlap between the TPs for the best 

programs identified in this work for reference insertions and non-reference insertions. The proportion of 

common insertions correctly found by all the programs is quite high in the case of reference insertions since 

it is almost 70% considering four programs. This proportion is much lower in the case of non-reference 

insertions with less than 11% for six programs. However, the proportion reach 48.1% for D. melanogaster 

and 58,5% for A. thaliana when considering only the results common to TEBreak, ngs_te_mapper2 and 

PoPoolationTE2, the three programs giving the best results in our benchmark. This remains lower than for 

the reference insertions. This lack of overlap among the tools has already been observed in other benchmarks 

(Nelson et al. 2017; Vendrell-Mir et al. 2019). Thus, as proposed by Vendrell-Mir et al. (2019), an approach 

consisting of using several tools at the same time to optimize the number of TPs must be limited to a few 

tools at a time. Even with this method, it is important to take into account that some information will be 

inevitably lost and that the number of polymorphic TE insertions will be underestimated. Another possibility 

would be to consider evolutionary and biological contexts as it was used before (Manee et al. 2018).

With our approach, it was possible to compare the characteristics of the True Positives (TPs) 

compared to those of the False Negatives (FNs), i.e. the insertions which are missed by the programs, a point 

that has never been assessed previously by the other benchmark analyses. The goal was to determine if there 

are biases inherent in the sequences preventing their detection. Between reference and non-reference 

insertions, some differences appeared. In particular, reference insertions correctly detected tend to be smaller 

than those not detected by the programs. That would indicate that degraded or small size types of TEs will be 

better detected as reference insertions. This observation is consistent with the fact that MITE reference 

elements were better identified than LTR-retrotransposon reference elements (Vendrell-Mir et al. 2019) since 

MITE elements are shorter than LTR-retrotransposons. On the contrary, the non-reference insertions are 
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better detected when their divergence compared to a reference element is low. Then, recent insertions will be 

better detected. Although this could be enough to identify recent events, it remains that some of the non-

reference insertions may be ancient. These particular insertions would be missed by the different programs. 

In their original manuscript, almost all programs acknowledge the fact that they cannot detect nested 

insertions. This is confirmed by our analysis for both types of insertions since TPs present significantly 

larger distances to the nearest TEs than FNs. Globally, the same bias appears between the two explored 

species. However, for A. thaliana, we observed that the GC content of genomic regions surrounding the 

insertions also play a role in whether they are detected or not by the program. This species has globally AT 

rich intergenic regions (DeRose-Wilson and Gaut 2007). We observed that the insertions are better detected 

when the genomic regions are less AT rich. Since TEs are known to be also AT rich (Lerat et al. 2002; 

Boissinot 2022), they may be better identified when their base composition is more different from the 

surrounding genomic regions. We also observed for the detection of non-reference insertions that the size of 

the TSD is important. Since these sequences may not be well conserved, it may prevent the detection of 

many insertions.

The case study provided here, focusing on B. taurus, allowed us to identify important criteria that 

should be considered before performing studies on polymorphic TEs in real population data. The choice of 

the program is crucial and depends on the analyzed species. Indeed, the best identified tool to use on this 

species is not the same as for D. melanogaster and A. thaliana. Therefore, it is essential to first perform tests 

on simulated data built with specific elements from the  species of interest to identify the most suitable 

tool(s) to use. The different programs were all used through the McClintock pipeline (Nelson et al. 2017; 

Chen et al. 2023) which has a significant advantage to allow the use of multiple tools simultaneously, 

prevents difficulties in program installation and ensures standardized results. It is also important to carefully 

select the type of consensus sequences, especially for LTR-retrotransposons. For these elements, usually the 

LTR and the internal parts are separated in distinct consensus sequences. The re-association of the LTR 

sequences and the internal parts of a given family is thus necessary and require an in-depth annotation of the 

reference genome. 

Here, we demonstrated the importance of testing a tool also on real data before launching a large-

scale population analysis. Even though our study was limited to 10 samples, the genomic characteristics and 

TE content reflected the reality. The results obtained on real data were different compared to the simulated 

data, with a better detection of the reference insertions but a less effective identification of the non-reference 

insertions. This difference is mainly due to the total number of ERV insertions. In the simulated data, half of 

the total insertions were  insertions not present in the reference, whereas they constituted approximately 2% 

of the insertions in the real data. It appears that detecting non-reference insertions is easier when they 

represent a larger fraction of the genome of interest.

We showed that non-reference insertions were overall more challenging to detect than the reference 

ones. Moreover, assessing insertions absent from the reference genome in real samples is challenging 

because we do not know what to expect, making it difficult to determine whether an insertion is a true or 
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false positive. In our analysis, we used variant calling results obtained from long-reads sequencing data. 

However, this approach might also miss some insertions, raising questions about its reliability as a reference. 

Nevertheless, it provides results from two distinct methodologies, ensuring the identification of TPs, even if 

some are missed.

In conclusion, most of the tested tools do not achieve extraordinary results. There are several biases 

that prevent them from detecting certain insertions. In addition, the FP rate is particularly high for some 

tools. Therefore, it is advisable to use a small number of programs simultaneously to optimize the detection 

of real insertions while keeping a critical perspective on the results.
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Supplementary data

Supplementary files: Output files produced by ReplicaTE on the two species D. melanogaster and A. 

thaliana.

Figure S1: Recall metrics for D. melanogaster and A. thaliana for the three read coverages for the reference 

insertions according to the different precision localization tested.

Figure S2: Precision metrics for D. melanogaster and A. thaliana for the three read coverages for the 

reference insertions according to the different precision localization tested.

Figure S3: Fscore metrics for D. melanogaster and A. thaliana for the three read coverages for the reference 

insertions according to the different precision localization tested.

Figure S4: Recall metrics for D. melanogaster and A. thaliana for the three read coverages for the non-

reference insertions according to the different precision localization tested.

Figure S5: Precision metrics for D. melanogaster and A. thaliana for the three read coverages for the non-

reference insertions according to the different precision localization tested.

Figure S6: Fscore metrics for D. melanogaster and A. thaliana for the three read coverages for the non-

reference insertions according to the different precision localization tested.

Figure S7: Recall and precision metrics of the different tested programs on Bos taurus simulated data.

Figure S8: Impact of the structure of the ERV input consensus sequences (panel A) and ERV families (panel 

B) on recall and precision metrics using TEFLoN on Bos taurus simulated data.

The detection of reference insertions is represented with circles and the detection of non-reference insertions 

with triangles.

Figure S9: Performance of TEFLoN and impact of read coverage in the detection of ERV insertions in 10 

Bos taurus samples. A) Recall and precision metrics, B) Number of TP and FP according to the short-read 

depth sequencing. Depth was computed on trimmed reads mapped on the cattle reference genome.

Supplementary Table S1: Accession numbers of 10 WGS short-read data samples of Bos taurus.

Supplementary file 1: command lines used to run Jitterbug and TEPID.

Supplementary file 2: command lines for the pre-processing of long and short read data.

Supplementary file 3: TE annotations for B. taurus.
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