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Abstract

Population genomic analyses rely on an accurate and unbiased characterization of the
genetic composition of the studied population. For short-read, high-throughput sequencing
data, mapping sequencing reads to a linear reference genome can bias population genetic
inference due to mismatches in reads carrying non-reference alleles. In this study, we inves-
tigate the impact of mapping bias on allele frequency estimates from pseudohaploid data,
commonly used in ultra-low coverage ancient DNA sequencing. To mitigate mapping bias,
we propose an empirical adjustment to genotype likelihoods. Using data from the 1000
Genomes Project, we find that our new method improves allele frequency estimation. To
test a downstream application, we simulate ancient DNA data with realistic post-mortem
damage to compare widely used methods for estimating ancestry proportions under differ-
ent scenarios, including reference genome selection, population divergence, and sequencing
depth. Our findings reveal that mapping bias can lead to differences in estimated admix-
ture proportion of up to 4% depending on the reference population. However, the choice of
method has a much stronger impact, with some methods showing differences of 10%. qpAdm
appears to perform best at estimating simulated ancestry proportions, but it is sensitive
to mapping bias and its applicability may vary across species due to its requirement for
additional populations beyond the sources and target population. Our adjusted genotype
likelihood approach largely mitigates the effect of mapping bias on genome-wide ancestry
estimates from genotype likelihood-based tools. However, it cannot account for the bias
introduced by the method itself or the noise in individual site allele frequency estimates
due to low sequencing depth. Overall, our study provides valuable insights for obtaining
more precise estimates of allele frequencies and ancestry proportions in empirical studies.

1 Introduction

A phenomenon gaining an increasing degree of attention in population genomics is mapping bias in re-1

sequencing studies employing short sequencing reads (Orlando et al., 2013; Gopalakrishnan et al., 2017; Günther and Nettelblad, 2019; Martiniano et al., 2020; Chen et al., 2021; Oliva et al., 2021; Prasad et al., 2022; Gopalakrishnan et al., 2022; Thorburn et al., 2023; Koptekin et al., 2023; Dolenz et al., 2024)2

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Orlando et al., 2013; Gopalakrishnan et al., 2017; Günther and Nettelblad, 2019; Martiniano et al., 2020; Chen et al., 2021; Oliva et al., 2021; Prasad et al., 2022; Gopalakrishnan et al., 2022; Thorburn et al., 2023; ?; Dolenz et al., 2024)3

. As most mapping approaches employ linear reference genomes, reads carrying the same allele as the4
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reference will have fewer mismatches and higher mapping scores than reads carrying an alternative5

allele leading to some alternative reads being rejected. As a consequence, sequenced individuals may6

seem more similar to the reference genome (and hence, the individual/population/species it originates7

from) than they are in reality, biasing variant calling and downstream analysis. The effect of mapping8

bias is exacerbated in ancient DNA studies due to post-mortem DNA damage such as fragmentation9

and cytosine deamination to uracil (which is sequenced as thymine) (Orlando et al., 2021) which in-10

creases the chances of spurious mappings or rejected reads due to an excessive number of mismatches11

relative to the fragment length. The human reference genome is a mosaic sequence of multiple indi-12

viduals from different continental ancestries (Green et al., 2010; Church et al., 2015). In most other13

species with an existing reference genome sequence, this genome represents a single individual from14

a certain population while for studies in species without a reference genome, researchers are limited15

to the genomes of related species. One consequence is that the sequence at a locus in the reference16

genome may either represent an ingroup or an outgroup relative to the other sequences studies in a17

population genomic analysis. It has been shown that this can bias estimates of heterozygosity, phy-18

logenetic placement, assessment of gene flow, and population affinity (see e.g. Orlando et al., 2013;19

Heintzman et al., 2017; Gopalakrishnan et al., 2017; Günther and Nettelblad, 2019; van der Valk et al.,20

2020; Mathieson et al., 2020; Prasad et al., 2022). Notably, while mapping bias mostly manifests as21

bias in favor of the reference allele, it also exists as bias in favor of the alternative alelle, depending22

on the studied individual and the particular position in the genome (Günther and Nettelblad, 2019).23

Different strategies have been proposed to mitigate or remove the effect of mapping bias. These24

include mapping to an outgroup species (Orlando et al., 2013), mapping to multiple genomes simultane-25

ously (Huang et al., 2013; Chen et al., 2021), mapping to variation graphs (Martiniano et al., 2020), the26

use of an IUPAC reference genome (Oliva et al., 2021), masking variable sites (Koptekin et al., 2023)27

::::
(?) or filtering of “biased reads” (Günther and Nettelblad, 2019). All of these strategies have sig-28

nificant limitations, such as the exclusion of some precious sequencing reads (outgroup mapping or29

filtering) or requiring additional data that may not be available for all species prior to the particular30

study (variation graphs, IUPAC reference genomes, or mapping to multiple genomes). Therefore, it31

would be preferable to develop a strategy that uses the available sequencing reads and accounts for32

potential biases in downstream analyses. Genotype likelihoods (Nielsen et al., 2011) represent one33

promising approach that can be used with low- and medium-depth sequencing data (Lou et al., 2021).34

Instead of working with hard genotype calls at each position one can use P (D|G), the probability of35

observing a set of sequencing reads D conditional on a true genotype G. Different approaches exist36

for calculating genotype likelihoods with the main aim of accounting for uncertainty due to random37

sampling of sequencing reads and sequencing error. Genotype likelihoods can be used in a wide range38

of potential applications for downstream analysis which include imputation (Rubinacci et al., 2021),39

estimation of admixture proportions (Skotte et al., 2013; Jørsboe et al., 2017; Meisner and Albrecht-40

sen, 2018), principal component analysis (PCA, Meisner and Albrechtsen, 2018), relatedness analysis41

(Korneliussen and Moltke, 2015; Hanghøj et al., 2019; Nøhr et al., 2021), or to search for signals of42

selection (Korneliussen et al., 2013; Fumagalli et al., 2013). Many of these are available as part of the43

popular software package ANGSD (Korneliussen et al., 2014).44

To render genotype likelihoods and their downstream applications more robust to the presence of45

mapping bias, we introduce a modified genotype likelihood, building off of the approach in Günther46

and Nettelblad (2019). We modify reads to carry both alleles at biallelic SNP positions to assess the47

distribution of mapping bias and to obtain an empirical quantification of the locus- and individual-48

specific mapping bias. We then calculate a modified genotype likelihood to account for mapping49

bias. The approach is similar to snpAD (Prüfer, 2018), with the contrast that we are using a set of50

pre-ascertained biallelic SNPs because our aim is not to call genotypes at all sites across the genome51

including potentially novel SNPs. Restricting to known biallelic SNPs is a common practice in the52

population genomic analysis of ancient DNA data as low-coverage and post-mortem damage usually53

limit the possibility of calling novel SNPs for most individuals (see e.g. Günther and Jakobsson, 2019),54

and methods like snpAD are restricted to very few high quality, high coverage individuals (Prüfer,55
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2018). Instead, most studies resort to using pseudohaploid calls or genotype likelihoods at known56

variant sites (Günther and Jakobsson, 2019); using ascertained biallelic SNPs is particularly relevant57

when ancient DNA is enriched using a SNP capture array (Rohland et al., 2022). This choice also58

allows us to estimate mapping bias locus-specific rather than using one estimate across the full genome59

of the particular individual.60

We examine two downstream applications of genetic data to determine the impact of mapping bias,61

and assess the ability of our corrected genotype likelihood to ameliorate issues with mapping bias.62

First, we look at a very high-level summary of genetic variation: allele frequencies. Because allele63

frequencies can be estimated from high-quality SNP array data, we can use them as a control and64

assess the impact of mapping bias and our corrected genotype likelihood in real short-read data.65

Next, we examine the assignment of ancestry proportions. Most currently used methods trace their66

roots back to the software STRUCTURE (Pritchard et al., 2000; Falush et al., 2003, 2007; Hubisz et al.,67

2009), a model-based clustering approach modeling each individual’s ancestry from K source pop-68

ulations (Pritchard-Stephens-Donnelley, or PSD, model). These source populations can be inferred69

from multi-individual data (unsupervised) or groups of individuals can be designated as sources (su-70

pervised). Popular implementations of this model differ in terms of input data (e.g. genotype calls71

or genotype likelihoods), optimization procedure and whether they implement a supervised and/or72

unsupervised approach (Table 1). In the ancient DNA field, f statistics (Patterson et al., 2012) and73

functions derived from them are fundamental to many studies due to their versatility, efficiency and74

their ability to work with pseudohaploid data, in which a random read is used to call haploid geno-75

types in low coverage individuals. Consequently, methods based on f statistics are also often used to76

estimate ancestry proportions in ancient DNA studies. One method that uses f statistics for super-77

vised estimation of ancestry proportions is qpAdm (Haak et al., 2015; Harney et al., 2021). In addition78

to the source populations (“left” populations), a set of more distantly related “right” populations is79

needed for this approach. Ancestry proportions are then estimated from a set of f4 statistics calculated80

between the target population and the “left” and “right” populations. We simulate sequencing data81

with realistic ancient DNA damage under a demographic model with recent gene flow (Figure 1) and82

then compare the different methods in their ability to recover the estimated admixture proportion and83

how sensitive they are to mapping bias.84

2 Materials and Methods85

2.1 Correcting genotype-likelihoods for mapping bias86

Two versions of genotype likelihoods (Nielsen et al., 2011) were calculated for this study. First, we87

use the direct method as included in the original version of GATK (McKenna et al., 2010) and also88

implemented in ANGSD (Korneliussen et al., 2014). For a position ℓ covered by n reads, the genotype89

likelihood is defined as the probability for observing the bases Dℓ = {bℓ1, bℓ2, . . . , bℓn} if the true90

genotype is A1A2:91

P (Dℓ|Gℓ = A1, A2) =

n∏
i=1

P (bℓi|Gℓ = A1, A2) =

n∏
i=1

P (bℓi|A1) + P (bℓi|A2)

2
(1)

with92

P (bℓi|A) =

{
1− eℓi if b = A
eℓi
3 if b ̸= A

where eℓi is the probability of a sequencing error of read i at position ℓ, calculated from the phred scaled93

base quality score Qℓi, i.e. eℓi = 10−Qℓi/10. The calculation of genotype likelihoods was implemented94

in Python 3 using the pysam library (https://github.com/pysam-developers/pysam), a wrapper95

around htslib and the samtools package (Li et al., 2009), or by calling samtoolsmpileup and parsing96
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the output in the Python script. Both corrected and default genotype likelihoods are calculated by97

the same Python script.98

To quantify the impact of mapping bias, we restrict the following analysis to a list of pre-defined99

ascertained biallelic SNPs (list provided by the user) and modify each original read to carry the100

other allele at the SNP position, as in Günther and Nettelblad (2019). The modified reads are then101

remapped to the reference genome using the same mapping parameters. If there were no mapping102

bias, all modified reads would map to the same position as the unmodified original read. Consequently,103

when counting both original and modified reads together, we should observe half of our reads carrying104

the reference allele and the other half carrying the alternative allele at the SNP position. We can105

summarize the read balance at position ℓ as rℓ, which measures the proportion of reference alleles106

among all original and modified reads mapping to the position. Without mapping bias, we would107

observe rℓ = 0.5. Under reference bias, we would observe rℓ > 0.5 and under alternative bias rℓ < 0.5.108

We can see rℓ as an empirical quantification of the locus- and individual-specific mapping bias. Similar109

to Prüfer (2018), we can then modify Equation 1 for heterozygous sites to110

P (Dℓ|Gℓ = Rℓ, Aℓ) =

n∏
i=1

rℓP (bℓi|Rℓ) + (1− rℓ)P (bℓi|Aℓ) (2)

where Rℓ is the reference allele at position ℓ and Aℓ is the alternative allele. Note that when rl ≡ 1
2 ,111

this recovers Equation 1. Genotype likelihood-based methods are tested with both genotype likelihood112

versions. All code used in this study can be found under https://github.com/tgue/refbias_GL113

2.2 Empirical Data114

To estimate the effect of mapping bias in empirical data we obtained low coverage BAM files for115

ten FIN (Finnish in Finland) individuals, ten JPT individuals (Japanese in Tokyo, Japan) and ten116

YRI (Yoruba in Ibadan, Nigeria) individuals from the 1000 Genomes project (mostly 2–4x cov-117

erage; Table S1) (Auton et al., 2015). We also downloaded Illumina Omni2.5M chip genotype118

calls for the same individuals (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/119

supporting/hd_genotype_chip/ALL.chip.omni_broad_sanger_combined.20140818.snps.genotypes.120

vcf.gz). The SNP data was filtered to restrict to sites without missing data in the 30 selected indi-121

viduals, a minor allele frequency of at least 0.2 in the reduced dataset (considering individuals from all122

populations together), which makes it more likely that the SNPs are common in all populations and123

both over- and underestimation of allele frequencies could be observed. We also excluded A/T and124

C/G SNPs to avoid strand misidentification. Reads mapping to these positions were extracted from125

the BAM files using samtools (Li et al., 2009). To make the sequence data more similar to fragmented126

ancient DNA, each read was split into two halves at its mid-point and each sub-read was re-mapped127

separately. For mapping, we used bwa aln (Li and Durbin, 2009) and the non-default parameters -l128

16500 (to avoid seeding), -n 0.01 and -o 2.
:
2
::::
(to

:::::
allow

::::
for

:::::
more

::::::
gaps

::::
due

:::
to

:::::::::::::
post-mortem

:::::::::
damages129

::::
and

:::::::::
increased

:::::::::::::
evolutionary

::::::::
distance

:::
to

::::
the

::::::::::
reference)

:::::::::::::::::::::::::::::::::::::::
(Schubert et al., 2012; Oliva et al., 2021)

:
.
:
Only130

reads with mapping qualities of 30 or higher were kept for further analysis.131

Pseudohaploid genotypes were called with ANGSD v0.933 (Korneliussen et al., 2014) by randomly132

drawing one read per SNP with a minimum base quality of 30. This step was performed using ANGSD133

with the parameters -checkBamHeaders 0 (to deactivate checking the headers of the BAM files) -134

doHaploCall 1 (to sample a single base only) -doCounts 1 (needed to determine the most common135

base) -doGeno -4 (to format genotyles as bases not integers in the output
:::
not

::::::
print

::::::::::
genotypes) -136

doPost 2 (estimate the posterior genotype probability assuming a uniform prior, output files not137

used) -doPlink 2 (produce output in tfam/tped format) -minMapQ 30 (to set the minimum mapping138

quality) -minQ 30 (to set the minimum base quality) -doMajorMinor 1 (to infer major and minor139

from genotype likelihoods) -GL 2 (to calculate GATK genotype likelihood, output files not used) -140

domaf 1 (calculate allele frequencies with fixed major and minor alleles). This call also calculates141

genotype likelihoods in ANGSD but we used both default and corrected likelihoods calculated from our142

4
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Figure 1: Illustration of the population relationships used in the simulations. Branch lengths are not
to scale

own Python script to ensure consistency. Haplocall files were then converted to Plink format using143

haploToPlink distributed with ANGSD (Korneliussen et al., 2014). Only SNPs with the same two144

alleles in pseudohaploid and SNP chip data were included in all comparisons. Remapping of modified145

reads and genotype likelihood calculation were performed as described above. Allele frequencies were146

calculated from genotype likelihoods with ANGSD v0.933 (Korneliussen et al., 2014) using -doMaf 4147

and the human reference as “ancestral” allele (-anc) in order to calculate the allele frequency of the148

reference alleles. SNP calls from the genotyping array and pseudohaploid calls were converted to149

genotype likelihood files assuming no genotyping errors (i.e. the genotype likelihood of the observed150

genotype was set to 1.0, others to 0.0 whereas all three likelihoods were set to 1
3 if data was missing151

for the site and individual). This allowed us to also estimate allele frequency estimates for this152

data with ANGSD.
:::::
Allele

::::::::::::
frequencies

:::::
were

:::::::::::
calculated

::::::
from

:::::::::
genotype

:::::::::::
likelihoods

::::::
with

:::::::
ANGSD

::::::
v0.933153

::::::::::::::::::::::::::
(Korneliussen et al., 2014)

:::::
using

::::::::
-doMaf

::
4
::::
and

:::::
the

:::::::
human

::::::::::
reference

:::
as

:::::::::::
“ancestral”

::::::
allele

:::::::
(-anc)

:::
in154

:::::
order

:::
to

:::::::::
calculate

::::
the

:::::
allele

::::::::::
frequency

:::
of

:::
the

::::::::::
reference

:::::::
alleles.

:
155

2.3 Simulation of genomic data156

To test the methods while having control over the “true” admixture proportions, population histories157

were simulated using msprime v0.6.2 (Kelleher et al., 2016). We simulated a demographic history158

where a target population T receives a single pulse of admixture with proportion f from source S3 50159

generations ago. Furthermore, we simulated population S1 which forms an outgroup and population160

S2 which is closer to T than S3 to serve as second source for estimating ancestry proportions (Figure 1).161

Finally, we simulated populations O1, O2, O3, and O4 as populations not involved in the admixture162

events which split off internal branches of the tree to serve as “right” populations for qpAdm (Haak163

et al., 2015; Harney et al., 2021). Split times were scaled relative to the deepest split t123: the split164

between (S2, T ) and S3, t23, is set to 0.5× t123 while the split between T and S2 was set to 0.2× t123.165

To set t123, we considered a value of 20,000 generations, approximately falling in the range of the166

split of all human populations (Schlebusch et al., 2017) or the Neanderthal-Denisovan split (Rogers167

et al., 2017) i.e. approximating the divergence between distant populations or sub-species, and 50,000168

generations, corresponding to a comparison between closely related species. Mutation rate was set to169

2.5× 10−8 and recombination rate was set to 2× 10−8, which are both in the upper part of the ranges170

for mammals and vertebrates (Dumont and Payseur, 2008; Bergeron et al., 2023). The effective171

population size along all branches was 10,000, a value often considered for humans (Charlesworth,172

2009). For each population, 21 diploid individuals (i.e. 42 haploid chromosomes) with 5 chromosome173

pairs of 20,000,000 bp (corresponding to a short mammalian chromosome arm, Lander et al. (2001))174
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each were simulated.175

As msprime does not produce sequences but positions of derived alleles at each haploid chromosome,176

we had to convert this information into a sequence. For each chromosome, a random ancestral sequence177

was generated with a GC content of 41% corresponding to the GC content of the human genome178

(Lander et al., 2001). Transversion polymorphisms were then placed along the sequence at the positions179

produced by the msprime simulations. The resulting sequences for each haploid chromosome were then180

stored as FASTA files. One of the 42 simulated sequences from populations S1, S2 and S3 were used181

as reference genomes. Out of the remaining sequences, pairs of FASTA files were then considered182

as diploid individuals and used as input for gargammel (Renaud et al., 2017) to serve as endogenous183

sequences for the simulation of next-generation sequencing data with ancient DNA damage. Data were184

simulated to mimic data generated with an Illumina HiSeq 2500 sequencing machine assuming the post-185

mortem damage pattern observed when sequencing Neandertals in Briggs et al. (2007). We simulated186

coverages of 0.5X and 2.0X. For each individual, fragment sizes followed a log-normal distribution187

with a location between 3.3 and 3.8 (randomly drawn per individual from a uniform distribution)188

and a scale of 0.2, corresponding to an average fragment length per individual between 27 and 46 bp.189

Fragments shorter than 30 bp were excluded. No contaminating sequences were simulated. Sequencing190

reads were then trimmed and merged with AdapterRemoval (Schubert et al., 2016). All reads (merged191

and the small proportion of unmerged) were then mapped to the different reference genomes
:::::::
haploid192

:::::::
FASTA

::::
files

::::::::::::
representing

::::::::::
reference

::::::::
genomes

:::::
from

::::
the

:::::
three

::::::::::::
populations

::::
(S1,

::::
S2

::::
and

::::
S3) using bwa aln193

v0.7.17 (Li and Durbin, 2009) together with the commonly used non-default parameters -l 16500 (to194

avoid seeding), -n 0.01 and -o 2 (to allow for more mismatches and gaps due to post-mortem damages195

and increased evolutionary distance to the reference) (Schubert et al., 2012; Oliva et al., 2021). BAM196

files were handled using samtools v1.5 (Li et al., 2009).197

To ascertain SNPs, we avoided the effect of damage, sequencing errors and genotype callers, by198

identifying biallelic SNPs directly from the simulated genotypes, prior to the gargammel simulation of199

reads and mapping, and restricted to SNPs with a minimum allele frequency of 10% in the outgroup200

population S1. This mimics an ascertainment procedure in which SNPs are ascertained in an outgroup201

population, which may be common in many taxa. 100,000 SNPs were selected at random using Plink202

v1.90 (Chang et al., 2015) –thin-count. Genotype calling and downstream analysis were performed203

separately for the three reference genomes originating from populations S1, S2 and S3. Pseudohaploid204

calls were then generated for all individuals at these sites using ANGSD v0.917 (Korneliussen et al., 2014)205

by randomly sampling a single read per position with minimum base and mapping quality of at least206

30. This step was performed using ANGSD with the parameters as described for the empirical data207

above and files were then converted to Plink format using haploToPlink distributed with ANGSD208

(Korneliussen et al., 2014). For downstream analyses, the set of SNPs was further restricted to209

sites with less than 50 % missing data and a minor allele frequency of at least 10% in S1, S2, S3210

and T together. Binary and transposed Plink files were handled using Plink v1.90 (Chang et al.,211

2015). convertf (Patterson et al., 2006; Price et al., 2006) was used to convert between Plink and212

EIGENSTRAT file formats. Plink was also used for linkage disequilibrium (LD) pruning with parameters213

–indep-pairwise 200 25 0.7.214

2.4 Estimating admixture proportions215

We used four different approaches to estimate ancestry proportions in our target population T . In216

addition to differences in the underlying model and implementation, the tools differ in the type of their217

input data (genotype calls or genotype likelihoods) and whether their approaches are unsupervised218

and/or supervised (Table 1).219

All software was set to estimate ancestry assuming two source populations. Unless stated otherwise,220

S2 and S3 were set as sources and T as the target population while no other individuals were included221

in when running the software. ADMIXTURE (Alexander et al., 2009; Alexander and Lange, 2011) is the222

only included method that has both a supervised (i.e. with pre-defined source populations) and an223

unsupervised mode. Both options were tested using the –haploid option without multithreading as the224
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Table 1: Overview of the different tools used for ancestry estimation.

Method Genotype calls Genotype-likelihoods Unsupervised Supervised Citation
ADMIXTURE X - X X Alexander et al. (2009);

Alexander and Lange
(2011)

qpAdm X - - X Haak et al. (2015); Harney
et al. (2021)

NGSadmix - X X - Skotte et al. (2013)
fastNGSadmix -* X - X Jørsboe et al. (2017)

* source populations for fastNGSadmix can be either genotype calls or genotype likelihoods

genotype calls were pseudo-haploid. For qpAdm (Haak et al., 2015; Harney et al., 2021), populations225

O1, O2, O3 and O4 served as “right” populations. qpAdm was run with the options allsnps: YES and226

details: YES. For fastNGSadmix (Jørsboe et al., 2017), allele frequencies in the source populations227

were estimated using NGSadmix (Skotte et al., 2013) with the option -printInfo 1. fastNGSadmix228

was then run to estimate ancestry per individual without bootstrapping. NGSadmix (Skotte et al.,229

2013) was run in default setting. The mean ancestry proportions across all individuals in the target230

population was used as an ancestry estimate for the entire population. In the case of unsupervised231

approaches, the clusters belonging to the source populations were identified as those where individuals232

from S2 or S3 showed more than 90 % estimated ancestry.233

3 Results234

3.1 Impact of mapping bias on allele frequency estimates in empirical data235

We first tested the effect of mapping bias on allele frequency estimates in empirical data. We selected236

low to medium coverage (mostly between 2–4x coverage, except for one individual at 14x, Table S1)237

for ten individuals from each of three 1000 Genomes populations (FIN, JPT and YRI) from different238

continents. All individuals show an empirical bias towards the reference allele as indicated by average239

rL > 0.5 (Tables S1 and S2). We used ANGSD to estimate allele frequencies from genotype likeli-240

hoods based on short-read NGS data (read lengths reduced to 36-54 bp to better resemble fragmented241

aDNA data) and compare them to allele frequencies estimated from the same individuals genotyped242

using a SNP array and pseudohaploid genotype data.
::
In

:::::::::
addition

::
to

:::::::::::::::
fragmentation,

:::::::::::::
deamination

::
is

::
a243

::::::
major

::::::
factor

::::::::::::
contributing

:::
to

:::::::::
mapping

:::::
bias

::
in

::::::::
ancient

:::::
DNA

:::::
due

::
to

::::
the

:::::::::
resulting

::::::
excess

:::
of

::::::::::::
mismatches244

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Günther and Nettelblad, 2019; Martiniano et al., 2020),

:::::::
which

:::
we

:::
did

::::
not

::::::::
explore

:::::
here.

:
As the geno-245

typing array does not involve a mapping step to a reference genome it should be less affected by246

mapping bias, we consider these estimates as “true” allele frequencies.247

Overall, genotype likelihood-based point estimates of the allele frequencies tend towards more inter-248

mediate allele frequencies while pseudohaploid genotypes and “true” genotypes result in more alleles249

estimated to have low and high alternative allele frequency (Figure S1). In all tested populations, the250

default version of genotype likelihood calculation produced an allele frequency distribution slightly251

shifted towards lower non-reference allele frequency estimates compared to the corrected genotype252

likelihood (Paired Wilcoxon test p < 2.2 × 10−22 in all populations). Consistently, the per-site allele253

frequencies estimated from the corrected genotype likelihoods exhibit a slightly better correlation with254

the “true” frequencies (Table 2). Allele frequency estimates from pseudohaploid data display the best255

correlation with the “true” frequencies in all populations (Table 2).256

Overall, the per-site differences between “true” allele frequencies and all frequencies estimated257

from NGS data (genotype-likelihoods and pseudohaploid) show a trend towards lower estimated non-258

reference alleles in the NGS data (Figure 2A-C), suggesting an impact of mapping bias. Outliers259

even reach a difference of up to -1.0. Interestingly, despite the overall closer concordance between260

the pseudohaploid allele frequency spectrum and the SNP array allele frequency spectrum, there is261
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Table 2: Pearson’s correlation coefficients comparing different allele frequency estimates in the three
empirical populations. 95% confidence intervals are shown in parentheses.

Population True vs default GL True vs. corrected GL True vs. Pseudohaploid

FIN 0.8460 [0.8453, 0.8467] 0.8471 [0.8464, 0.8478] 0.8509 [0.8502, 0.8515]
YRI 0.8246 [0.8238, 0.8254] 0.8258 [0.8250, 0.8266] 0.8337 [0.8330, 0.8345]
JPT 0.8466 [0.8459, 0.8474] 0.8474 [0.8466, 0.8481] 0.8687 [0.8681, 0.8693]

higher variation between pseudohaploid and true frequencies per-site (Figure 2A-C), suggesting that262

allele frequency estimates from pseudohaploid calls are relatively noisy but also relatively unbiased. A263

consequence of the systematic over-estimation of the allele frequencies when using genotype likelihoods264

is that the population differentiation (here measured as f2 statistic) is reduced compared to estimates265

from the SNP array or pseudohaploid genotype calls (Figure 2D-F). In Günther and Nettelblad (2019),266

we found that different parts of the human reference genome exhibit different types of mapping bias267

in the estimation of archaic ancestry which could be attributed to the fact that the human reference268

genome is a mosaic of different ancestries (Green et al., 2010; Church et al., 2015). Here, we do not269

find substantial differences in the allele frequency patterns between the different continental ancestries270

(Figures S2-S4).271

3.2 Estimation of admixture proportions based on genotype calls in simulated data272

We compare the accuracy of the different methods for estimating admixture proportion under a set273

of different population divergence times, sequencing depths, and with or without LD pruning of the274

SNP panel. Mapping to three different reference genomes, one from an outgroup (S1) and the two275

ingroups also representing the sources of the admixture event (S2 and S3), allows us to use S1 as276

a control which should not be affected by mapping bias and only other aspects of the data. We277

expect that mapping reads to one of the sources will cause a preference for reads carrying alleles from278

that population at heterozygous sites and, consequently, an overestimation of the ancestry proportion279

attributed to that population. The distance between the estimates when mapped to S2 or S3 (and280

their distances to the results when using S1) can then be seen as an estimate of the extent of mapping281

bias.282

For most parts of this results section, we will focus on the scenario with an average sequencing283

depth of 0.5X where the deepest population split (t123) was 50,000 generations ago and the split284

(t23) between the relevant sources dating to 25,000 generations ago. Consequently, mapping the285

reads against a reference genome sequence from one or the other source would be equivalent to a286

study comparing (sub-)species where the reference genome originated from one of those populations.287

Results for other population divergences and sequencing depths are shown in Figures S5-S10.288

We begin by assessing methods that require hard genotype calls, ADMIXTURE and qpAdm. For these289

approaches, we used single randomly drawn reads per individual and site to generate pseudo-haploid290

data in the target population. The popular implementation of the PSD (Pritchard et al., 2000) model291

working with SNP genotype calls, ADMIXTURE (Alexander et al., 2009; Alexander and Lange, 2011),292

has both supervised and unsupervised modes. Both modes show similar general patterns: low (10%)293

admixture proportions are estimated well while medium to high (≥ 50%) admixture proportions294

are over-estimated (Figure 3). On the full SNP panel, the median estimated admixture proportion295

differs up to ∼ 4% when mapping to reference genomes representing either of the two sources (S2 or296

S3) while mapping to the outgroup reference genome (S1) results in estimates intermediate between297

the two (Data S1). LD pruning slightly reduces mapping bias and reduces the overestimation, at298

least for high (90%) admixture proportions. qpAdm (Haak et al., 2015; Harney et al., 2021), on the299

other hand, estimated all admixture proportions accurately when the outgroup (S1) was used for the300

reference genome sequence and when the full SNP panel was used. The median estimates of admixture301

differed up to 3% between mapping to reference genomes from one of the source populations (S2 or302

8



Figure 2: Differences in allele frequency estimates. Boxplots for the differences between default geno-
type likelihood-based estimates and corrected genotype likelihood-based estimates, default
genotype likelihood-based estimates and SNP array-based estimates, corrected genotype
likelihood-based estimates, pseudohaploid (PH) genotype-based and SNP array-based esti-
mates (A) in the FIN population, (B) in the YRI population and (C) in the JPT population.
(D-F) are showing boxplots of the pairwise per-site population differentiation (measured as
f2 statistic) for the four allele frequency estimates.
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Figure 3: Simulation results for genotype call based methods using t123 = 50000 generations and a
sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture proportions,
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::::
flow
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::::
500
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generations

::::
ago.

S3). Notably, LD pruning increased the noise of the qpAdm estimates (probably due to the reduced303

number of SNPs) and led to all admixture proportions being slightly underestimated (Figure 3).304

The extent of mapping bias decreases with lower population divergence between the sources across all305

methods (Figure S5), as mapping bias should correlate with distance to the reference genome sequence.306

Conversely, increasing sequencing depth mostly reduced noise but not mapping bias (Figures S6 and307

S9) as the genotype-based methods benefit from the increased number of SNPs but the genotype calls308

do not increase certainty when multiple reads are mapping to the same position.309

3.3 Estimation of admixture proportions based on genotype likelihoods in simulated310

data311

We next examined the performance of genotype-likelihood-based approaches to estimate admixture312

proportions. In principle, genotype likelihoods should be able to make better use of all of the data in313

ancient DNA, because more than a single random read can be used per site. Moreover, we are able314

to explicitly incorporate our mapping bias correction into the genotype likelihood. We compared the315

supervised fastNGSadmix (Jørsboe et al., 2017) to the unsupervised NGSadmix (Skotte et al., 2013).316

fastNGSadmix shows the highest level of overestimation of low to medium admixture proportions317

(≤ 50%) among all tested approaches while high admixture proportions (90%) are estimated well318

(Figure 4). Mapping bias caused differences of up to ∼ 3% in the admixture estimates when mapping319

to the different reference genomes. LD pruning enhances the overestimation of low admixture propor-320

tions while leading to an underestimation of high admixture proportions (Data S1). Notably, when321

employing the corrected genotype-likelihood the estimated admixture proportions when mapping to322

S2 or S3 are slightly more similar than with the default formula without correction, showing that the323

correction makes the genome-wide estimates less dependent on the reference sequence used for map-324

ping while not fully removing the effect. The estimates when using the outgroup S1 as reference are325

slightly higher for high admixture proportions (90%). The results for NGSadmix show similar patterns326

to ADMIXTURE with a moderate overestimation of admixture proportions ≥ 50% (Figure 4). Mapping327
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Figure 4: Simulation results for genotype likelihood based methods using t123 = 50000 generations and
a sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture proportions,
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bias caused differences of up to ∼ 4% in the admixture estimates when mapping to the different328

reference genomes. After LD pruning, estimated admixture proportions for higher simulated values329

were closer to the simulated values. Furthermore, employing the mapping bias corrected genotype-330

likelihoods made the estimated admixture proportions less dependent on the reference genome used331

during mapping, particularly when using NGSadmix in pruned data, where all three reference genomes332

produce nearly identical results. Notably, the extent of over-estimation for both methods seems to333

be somewhat negatively correlated with population divergence (Figures S7 and 4), i.e. increased dis-334

tances between the source populations reduces the method bias. Further patterns are as expected:335

the extent of mapping bias is correlated with population divergence and increased sequencing depth336

reduces noise (Figures S7, 4, S8 and S10).337

4 Discussion338

We illustrate the impacts of mapping bias on downstream applications, such as allele frequency esti-339

mation and ancestry proportion estimation, and we introduced a new approach to recalibrate genotype340

likelihoods in the presence of mapping bias to alleviate its effects. The impact of mapping bias in341

our comparisons is small but pervasive suggesting that it can have an effect on the results of dif-342

ferent types of analysis in empirical studies. In contrast to other approaches to alleviate mapping343

bias, such as employing pangenome variation graphs (Martiniano et al., 2020; Koptekin et al., 2023)344

::::::::::::::::::::::::::
(Martiniano et al., 2020; ?), it does not require establishing a separate pipeline. Instead, only reads345

mapping to a set of ascertained SNP positions need to be modified and remapped which only represents346

only a fraction of all reads and consequently will require a small proportion of the original mapping347

time. Our Python scripts used to calculate the genotype likelihoods could be optimized further, but348

this step is of minor computational costs compared to other parts of the general bioinformatic pipelines349

(∼1 minute per individual in the empirical data analysis for this study) in ancient DNA research. The350

corrected genotype likelihoods can then be directly used in downstream analyses using the same file351

structures and formats as other genotype likelihood-based approaches.352

Increasing sample sizes in ancient DNA studies have motivated a number of studies aiming to detect353

selection in genome-wide scans or to investigate phenotypes in ancient populations (e.g. Mathieson et al., 2015; Cox et al., 2022; Klunk et al., 2022; Gopalakrishnan et al., 2022; Mathieson and Terhorst, 2022; Davy et al., 2023; Barton et al., 2023; Hui et al., 2024)354

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Mathieson et al., 2015; Cox et al., 2022; Klunk et al., 2022; Gopalakrishnan et al., 2022; Mathieson and Terhorst, 2022; Davy et al., 2023; ?; Hui et al., 2024)355
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. Such investigations are potentially very sensitive to biases and uncertainties in genotype calls or al-356

lele frequencies at individual sites while certain effects will average out for genome-wide estimates357

such as ancestry proportions. Concerns about certain biases and how to estimate allele frequen-358

cies have even reduced confidence in the results of some studies searching for loci under selection359

(Gopalakrishnan et al., 2022; Barton et al., 2023)
:::::::::::::::::::::::::::::::
(Gopalakrishnan et al., 2022; ?). Our results indi-360

cate that such concerns are valid as individual sites can show very strong deviations when allele361

frequencies are estimated from low-coverage sequencing data (Figure 2). This is due to a combination362

of effects, including mapping bias. Without high coverage data, genotype likelihood approaches with-363

out an allele frequency prior will naturally put some weight on all three potential genotypes at a site,364

ultimately collectively driving allele frequency to more intermediate values. The risk is then that most365

downstream analyses will treat the allele frequency point estimates at face value, potentially leading366

to both false positives and negatives. While our new approach to recalibrate genotype likelihoods367

reduces the number of outlier loci, there is still uncertainty in allele frequency estimates from low368

coverage data. Therefore, results heavily relying on allele frequency estimates or genotype calls at369

single loci from low-coverage sequencing data or even ancient DNA data need to be taken with a grain370

of salt.371

The simulations in this study revealed a modest but noticeable effect of mapping bias on ancestry372

estimates as the difference between reference genomes never exceeded 5 percent. In particular, we373

found that mapping bias and method bias even counteract each other in certain cases, leading to374

better estimates of the admixture proportion when mapping to one of the sources
::::::::::::
(see also ??). The375

differences seen in our simulations are likely underestimates of what might occur in empirical studies,376

because real genomes are larger and more complex than what we used in the simulations. For instance,377

we simulated five 20 megabase long chromosomes for a 100 megabase genome, while mammalian378

genomes are one order of magnitude larger; the human genome is roughly 3 gigabases and the shortest379

human chromosome alone is ∼45 megabases long. Furthermore, the only added complexity when380

generating the random sequences was a GC content of 41%. Real genomes also experience more381

complex mutation events involving translocations and duplications, which, together with the increased382

length and the presence of repetitive elements, should increase mapping bias in empirical studies.383

Finally, the range of possible demographic histories including the relationships of targets and sources,384

the amount of drift, and the timing and number of gene flow events is impossible to explore in a385

simulation study. The restricted scenarios tested in this study should affect the quantitative results386

but the qualitative interpretation of mapping bias impacting ancestry estimates should extend beyond387

the specific model used in the simulations.388

While the ancestry estimates depended slightly on the reference genome the reads were mapped389

to, they seemed more influenced by the choice of method or software. Methods differed by more390

than 10% in their ancestry estimates from the same source data. This highlights that other factors391

and biases play major roles in the performance of these methods. Depending on the method, the392

type of input data, and the implementation, they showed different sensitivities to e.g. linkage or393

the amount of missing data (which was on average ∼37% per SNP for the 0.5x and ∼3% for the394

2.0x simulations). For non-pruned data, qpAdm performed best across all scenarios and did not show395

any method-specific bias in certain ranges of simulated admixture proportions. Multiple differences396

between the PSD and qpAdm methods may have contributed to the relative biases we observed. PSD397

models may propagate allele-frequency misestimation more than qpAdm because of their assumptions of398

linkage equilibrium and Hardy-Weinberg equilibrium. Indeed, we observed that LD pruning improved399

the performance of PSD models, but they are known to be sensitive to sample size and drift (e.g.400

Lawson et al., 2018; Toyama et al., 2020). More generally, because it is based on Patterson’s f401

statistics (Patterson et al., 2012), qpAdm estimates ancestry from relative differences. If mapping bias402

affects all populations similarly, then their relative relationships remain more stable. In contrast, PSD403

models reconstruct exact allele frequencies for the putative source populations therefore emphasizing404

the impact of mapping bias. Finally, the ancestry proportions of PSD models are constrained to [0, 1]405

which is not the case for qpAdm. Indeed, we see negative estimates in a small number of simulations406
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(3 runs with 0.5X depth and 50,000 generations divergence). This (biologically unrealistic) flexibility407

of qpAdm compared to PSD models drives the mean estimated admixture admixture proportion down,408

which may account for some of the reduction in upward method bias compared to the other methods.409

Broadly speaking, our results support the common practice of using qpAdm in most human ancient410

DNA studies. However, the requirement of data from additional, “right” populations, may make it411

difficult to apply to many non-human species. Furthermore, qpAdm only works with genotype calls,412

so it is influenced by mapping bias in similar ways as ADMIXTURE and these methods cannot benefit413

from the newly introduced genotype likelihood estimation. We also need to note that we tested qpAdm414

under almost ideal settings in our simulations with left and right populations clearly separated and415

without gene flow between them. More thorough assessments of the performance of qpAdm can be416

found elsewhere (Harney et al., 2021; Yüncü et al., 2023). In our simulations, unsupervised PSD-417

model approaches (ADMIXTURE, NGSadmix) work as well as or even better than supervised PSD-model418

approaches (ADMIXTURE, fastNGSadmix) in estimating the ancestry proportions in the target popula-419

tion. ADMIXTURE and NGSadmix benefit from LD pruning while LD pruning increases the method bias420

for fastNGSadmix and introduces method bias for qpAdm.421

Genotype likelihood-based methods for estimating ancestry proportions are not commonly used in422

human ancient DNA studies (but genotype likelihoods are popular as input for imputation pipelines).423

This may be surprising, because genotype-likelihood-based approaches are targeted at low coverage424

data, exactly as seen in ancient DNA studies. However, the definition of “low coverage” differs between425

fields. While most working with modern DNA would understand 2-4x as “low depth”, the standards426

for ancient DNA researchers are typically much lower due to limited DNA preservation. Genotype427

likelihood methods perform much better with >1x coverage, an amount of data that is not within428

reach for most ancient DNA samples investigated so far (Mallick et al., 2023)
:::
(?). The large body429

of known, common polymorphic sites in human populations allows the use of pseudohaploid calls430

at those positions instead. Nonetheless, this study highlights that unsupervised methods employing431

genotype-likelihoods (NGSadmix) can reach similar accuracies as methods such as ADMIXTURE that432

require (pseudo-haploid) genotype calls. Moreover, methods that incorporate genotype likelihoods433

have the added benefit that the modified genotype likelihood estimation approach can be used to reduce434

the effect of mapping bias. Furthermore, if some samples in the dataset have >1x depth, genotype435

likelihood-based approaches will benefit from the additional data and provide more precise estimates436

of ancestry proportions while pseudo-haploid data will not gain any information from more than one437

read at a position. Finally, genotype likelihoods are very flexible and can be adjusted for many other438

aspects of the data. For example, variations of genotype likelihood estimators exist that incorporate439

the effect of post-mortem damage (Hofmanová et al., 2016; Link et al., 2017; Kousathanas et al., 2017)440

allowing use of all sequence data without filtering for potentially damaged sites or enzymatic repair441

of the damages in the wet lab.442

As the main aim of this study was to show the general impact of mapping bias and introduce a443

modified genotype likelihood, we opted for a comparison of some of the most popular methods with444

a limited set of settings. This was done in part to limit the computational load of this study. We445

also decided to not set this up as a systematic assessment of different factors influencing mapping446

bias. The effects of fragmentation (shorter fragments increasing bias, Günther and Nettelblad, 2019),447

deamination damage (deamination increasing the number of mismatches and bias, Martiniano et al.,448

2020) and mapping algorithm/parameters (Dolenz et al., 2024) on mapping bias have been explored449

elsewhere. Our simulations were restricted to one mapping software (bwa aln) and the commonly450

used mapping quality threshold of 30. Mapping quality calculations differ substantially between tools451

and algorithms making their impact on mapping bias not directly comparable (Dolenz et al., 2024).452

For bwa aln (Li and Durbin, 2009), it has been suggested that a mapping quality threshold of 25453

(the value assigned when the maximum number of mismatches is reached) reduces mapping bias (e.g.454

Martiniano et al., 2020; Dolenz et al., 2024), and we also see a reduction in mapping bias when using455

these thresholds (Figures S11-S14). Therefore, a general suggestion for users of bwa aln should be456

to use 25 as the mapping quality cutoff. However, many users are using other mappers (e.g. bowtie,457
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Langmead and Salzberg, 2012) in their research, and adjusted genotype likelihoods allow correcting458

for mapping bias independent of the mapping software and its specifics in calculating mapping quality459

values. Our results reiterate that mapping bias can skew results in studies using low-coverage data460

as is the case in most ancient DNA studies. Different strategies exist for mitigating these effects and461

we added a modified genotype likelihood approach to the population genomic toolkit. Nevertheless,462

none of these methods will be the ideal solution in all cases and they will not always fully remove463

the potential effect of mapping bias, making proper verification and critical presentation of all results464

crucial.465
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K. Prüfer. snpAD: An ancient DNA genotype caller. Bioinformatics, 2018. doi: 10.1093/803

bioinformatics/bty507. URL https://academic.oup.com/bioinformatics/advance-article/804

doi/10.1093/bioinformatics/bty507/5042170.805

G. Renaud, K. Hanghøj, E. Willerslev, and L. Orlando. gargammel: a sequence simulator for ancient806

DNA. Bioinformatics, 33(4):577–579, Feb. 2017. ISSN 1367-4803. doi: 10.1093/bioinformatics/807

btw670. URL https://academic.oup.com/bioinformatics/article/33/4/577/2608651.808

A. R. Rogers, R. J. Bohlender, and C. D. Huff. Early history of Neanderthals and Deniso-809

vans. Proceedings of the National Academy of Sciences, 114(37):9859–9863, Sept. 2017. doi:810

10.1073/pnas.1706426114. URL https://www.pnas.org/doi/10.1073/pnas.1706426114. Pub-811

lisher: Proceedings of the National Academy of Sciences.812

N. Rohland, S. Mallick, M. Mah, R. Maier, N. Patterson, and D. Reich. Three assays for in-solution813

enrichment of ancient human DNA at more than a million SNPs. Genome Research, 32(11-12):814

2068–2078, Nov. 2022. ISSN 1088-9051, 1549-5469. doi: 10.1101/gr.276728.122. URL https:815

//genome.cshlp.org/content/32/11-12/2068. Company: Cold Spring Harbor Laboratory Press816

Distributor: Cold Spring Harbor Laboratory Press Institution: Cold Spring Harbor Laboratory817

Press Label: Cold Spring Harbor Laboratory Press Publisher: Cold Spring Harbor Lab.818

21

https://www.nature.com/articles/nature12323
https://www.nature.com/articles/s43586-020-00011-0
https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-0998.13457
https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-0998.13457
https://onlinelibrary.wiley.com/doi/abs/10.1111/1755-0998.13457
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty507/5042170
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty507/5042170
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/bty507/5042170
https://academic.oup.com/bioinformatics/article/33/4/577/2608651
https://www.pnas.org/doi/10.1073/pnas.1706426114
https://genome.cshlp.org/content/32/11-12/2068
https://genome.cshlp.org/content/32/11-12/2068
https://genome.cshlp.org/content/32/11-12/2068


S. Rubinacci, D. M. Ribeiro, R. J. Hofmeister, and O. Delaneau. Efficient phasing and imputa-819

tion of low-coverage sequencing data using large reference panels. Nature Genetics, 53(1):120–126,820

Jan. 2021. ISSN 1546-1718. doi: 10.1038/s41588-020-00756-0. URL https://www.nature.com/821

articles/s41588-020-00756-0. Number: 1 Publisher: Nature Publishing Group.822

C. M. Schlebusch, H. Malmström, T. Günther, P. Sjödin, A. Coutinho, H. Edlund, A. R. Munters,823
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Figure S1: Binned spectrum of non-reference alleles in FIN (A), YRI (B) and JPT (C) for the four
different estimation methods. Note that the specific ascertainment of common SNPs in the
joint genotyping data contributes to the enrichment of variants with (true) intermediate
frequencies.
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Figure S2: Differences in allele frequency estimates in the parts of the reference genome attributed to
African ancestry. Boxplots for the differences between default genotype likelihood-based
estimates and corrected genotype likelihood-based estimates, default genotype likelihood-
based estimates and SNP array-based estimates, corrected genotype likelihood-based es-
timates, pseudohaploid (PH) genotype-based and SNP array-based estimates (A) in the
FIN population and (B) in the YRI population. (C) is showing boxplots of the per-site
population differentiation (measured as f2 statistic) for the four allele frequency estimates.
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Figure S3: Differences in allele frequency estimates in the parts of the reference genome attributed to
European ancestry. Boxplots for the differences between default genotype likelihood-based
estimates and corrected genotype likelihood-based estimates, default genotype likelihood-
based estimates and SNP array-based estimates, corrected genotype likelihood-based es-
timates, pseudohaploid (PH) genotype-based and SNP array-based estimates (A) in the
FIN population and (B) in the YRI population. (C) is showing boxplots of the per-site
population differentiation (measured as f2 statistic) for the four allele frequency estimates.
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Figure S4: Differences in allele frequency estimates in the parts of the reference genome attributed to
East Asian ancestry. Boxplots for the differences between default genotype likelihood-based
estimates and corrected genotype likelihood-based estimates, default genotype likelihood-
based estimates and SNP array-based estimates, corrected genotype likelihood-based es-
timates, pseudohaploid (PH) genotype-based and SNP array-based estimates (A) in the
FIN population and (B) in the YRI population. (C) is showing boxplots of the per-site
population differentiation (measured as f2 statistic) for the four allele frequency estimates.
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Figure S6: Simulation results for genotype call based methods using t123 = 20000 generations and a
sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture proportions,
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Figure S7: Simulation results for genotype likelihood based methods using t123 = 20000 generations
and a sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture
proportions
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Figure S8: Simulation results for genotype likelihood based methods using t123 = 20000 generations
and a sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture
proportions

:
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i.e.

::::
the

:::::
gene

:::::
flow

::::::::
received

:::::
from

::::
S3

::::
500

:::::::::::
generations

::::
ago.
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Figure S9: Simulation results for genotype call based methods using t123 = 50000 generations and a
sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture proportions,
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i.e.
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the

:::::
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::::
flow

:::::::::
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:::::
from

:::
S3

::::
500

::::::::::::
generations

::::
ago.
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Figure S10: Simulation results for genotype likelihood based methods using t123 = 50000 generations
and a sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture
proportions

:
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i.e.

::::
the

:::::
gene

:::::
flow

::::::::
received

:::::
from

::::
S3

::::
500

:::::::::::
generations

::::
ago.
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Figure S11: Simulation results for genotype call based methods using t123 = 20000 generations and a
sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture propor-
tions,

::::
i.e.

::::
the

:::::
gene

::::
flow

:::::::::
received

:::::
from

:::
S3

::::
500

::::::::::::
generations

::::
ago. For this run, the mapping

quality threshold was set to 25 instead of 30 as in all other runs.
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Figure S12: Simulation results for genotype likelihood based methods using t123 = 20000 generations
and a sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture
proportions

:
,
:::
i.e.

:::::
the

:::::
gene

:::::
flow

::::::::
received

:::::
from

::::
S3

::::
500

::::::::::::
generations

::::
ago. For this run, the

mapping quality threshold was set to 25 instead of 30 as in all other runs.
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Figure S13: Simulation results for genotype call based methods using t123 = 50000 generations and a
sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture propor-
tions,

::::
i.e.

::::
the

:::::
gene

::::
flow

:::::::::
received

:::::
from

:::
S3

::::
500

::::::::::::
generations

::::
ago. For this run, the mapping

quality threshold was set to 25 instead of 30 as in all other runs.
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Figure S14: Simulation results for genotype likelihood based methods using t123 = 50000 generations
and a sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture
proportions

:
,
:::
i.e.

:::::
the

:::::
gene

:::::
flow

::::::::
received

:::::
from

::::
S3

::::
500

::::::::::::
generations

::::
ago. For this run, the

mapping quality threshold was set to 25 instead of 30 as in all other runs.
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Supplementary Tables859

Table S1: 1000 genomes individuals used for the analysis of empirical data.

Individual Population Autosomal sequencing depth Average original read length Average rL
HG00171 FIN 3.12803 108 0.5031
HG00177 FIN 3.43327 108 0.5023
HG00189 FIN 3.48314 108 0.5026
HG00190 FIN 3.089 108 0.5023
HG00272 FIN 3.61242 108 0.5027
HG00277 FIN 3.86275 76 0.5052
HG00284 FIN 4.08807 76 0.5052
HG00323 FIN 2.80008 89.19 0.5035
HG00330 FIN 13.9648 90.22 0.5045
HG00380 FIN 3.45273 100 0.502
NA18961 JPT 3.48611 76 0.5067
NA18964 JPT 3.333 76 0.5052
NA18969 JPT 2.6653 100 0.5026
NA18970 JPT 4.47082 100 0.502
NA19009 JPT 3.94626 108 0.5033
NA19076 JPT 3.50604 108 0.5029
NA19080 JPT 3.84401 108 0.5055
NA19081 JPT 2.60827 108 0.5034
NA19082 JPT 3.58866 108 0.5018
NA19084 JPT 4.37475 108 0.5026
NA18520 YRI 3.99207 76 0.5057
NA18522 YRI 2.55368 76 0.5066
NA18853 YRI 2.56291 76 0.5099
NA18923 YRI 4.42742 100 0.5019
NA19116 YRI 3.03829 82.51 0.5056
NA19130 YRI 4.97799 76 0.5061
NA19197 YRI 4.19443 100 0.5021
NA19200 YRI 4.22902 100 0.502
NA19236 YRI 4.21535 76 0.5055
NA19248 YRI 4.24979 76 0.5058

Table S2: Average read balances for the 1000 genomes populations used for the analysis of empirical
data.

Population Average rL
FIN 0.50334
JPT 0.5036
YRI 0.50512
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