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Abstract

Population genomic analyses rely on an accurate and unbiased characterization of the
genetic setup

::::::::::::
composition

:
of the studied population. For short-read, high-throughput se-

quencing data, mapping sequencing reads to a linear reference genome can bias population
genetic inference due to mismatches in reads carrying non-reference alleles. In this study,
we investigate the impact of mapping bias on allele frequency estimates from pseudohap-
loid data, commonly used in ultra-low coverage ancient DNA sequencing. To mitigate
mapping bias, we propose an empirical adjustment to genotype likelihoods. Simulating

:::::
Using

:::::
data

::::::
from

:::
the

:::::
1000

::::::::::
Genomes

::::::::
Project,

:::
we

:::::
find

:::::
that

::::
our

::::
new

::::::::
method

:::::::::
improves

::::::
allele

:::::::::
frequency

::::::::::::
estimation.

:::
To

:::::
test

::
a

::::::::::::
downstream

::::::::::::
application,

:::
we

:::::::::
simulate

:
ancient DNA data

with realistic post-mortem damage , we
:
to

:
compare widely used methods for estimating

ancestry proportions under different scenarios, including reference genome selection, pop-
ulation divergence, and sequencing depth. Our findings reveal that mapping bias can lead
to differences in estimated admixture proportion of up to 4% depending on the reference
population. However, the choice of method has a much stronger impact, with some meth-
ods showing differences of 10%. qpAdm appears to perform best at estimating simulated
ancestry proportions, but it is sensitive to mapping bias and its applicability may vary
across species due to its requirement for additional populations beyond the sources and
target population. Our adjusted genotype likelihood approach largely mitigates the effect
of mapping bias on genome-wide ancestry estimates from genotype likelihood-based tools.
However, it cannot account for the bias introduced by the method itself or the noise in
individual site allele frequency estimates due to low sequencing depth. Overall, our study
provides valuable insights for obtaining

:::::
more

:
precise estimates of allele frequencies and

ancestry proportions in empirical studies.

1 Introduction

A phenomenon gaining an increasing degree of attention in population genomics is mapping bias in re-1

sequencing studies employing short sequencing reads (Orlando et al., 2013; Gopalakrishnan et al., 2017; Günther and Nettelblad, 2019; Martiniano et al., 2020; Chen et al., 2021; Oliva et al., 2021; Prasad et al., 2022; Gopalakrishnan et al., 2022; Thorburn et al., 2023; Koptekin et al., 2023)2

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Orlando et al., 2013; Gopalakrishnan et al., 2017; Günther and Nettelblad, 2019; Martiniano et al., 2020; Chen et al., 2021; Oliva et al., 2021; Prasad et al., 2022; Gopalakrishnan et al., 2022; Thorburn et al., 2023; Koptekin et al., 2023; Dolenz et al., 2024)3

1



. As most mapping approaches employ linear reference genomes, reads carrying the same allele as the4

reference will have fewer mismatches and higher mapping scores than reads carrying an alternative5

allele leading to some alternative reads being rejected. As a consequence, sequenced individuals may6

seem more similar to the reference genome (and hence, the individual/population/species it originates7

from) than it is
::::
they

::::
are

:
in reality, biasing variant calling and downstream analysis. The effect of8

mapping bias is exacerbated in ancient DNA studies due to post-mortem DNA damage such as frag-9

mentation and cytosine deamination to uracil (which is sequenced as thymine) (Orlando et al., 2021)10

::::::
which

:::::::::
increases

::::
the

::::::::
chances

:::
of

:::::::::
spurious

::::::::::
mappings

:::
or

::::::::
rejected

::::::
reads

::::
due

:::
to

:::
an

::::::::::
excessive

::::::::
number

:::
of11

:::::::::::
mismatches

::::::::
relative

:::
to

::::
the

:::::::::
fragment

:::::::
length. The human reference genome is a mosaic sequence of12

multiple individuals from different continental ancestries (Green et al., 2010; Church et al., 2015). In13

most other species with an existing reference genome sequence, this genome represents a single indi-14

vidual from a certain population while for studies in species without a reference genome, researchers15

are limited to the genomes of related species. One consequence is that the sequence at a locus in the16

reference genome may either represent an ingroup or an outgroup relative to the other sequences stud-17

ies in a population genomic analysis. It has been shown that this can bias estimates of heterozygosity,18

phylogenetic placement, assessment of gene flow, and population affinity (see e.g. Orlando et al., 2013;19

Heintzman et al., 2017; Gopalakrishnan et al., 2017; Günther and Nettelblad, 2019; van der Valk et al.,20

2020; Mathieson et al., 2020; Prasad et al., 2022). Notably, while mapping bias mostly manifests as21

reference bias
::::
bias

:::
in

:::::
favor

:::
of

::::
the

:::::::::
reference

::::::
allele, it also exists as alternative bias

::::
bias

::
in

::::::
favor

:::
of22

:::
the

:::::::::::
alternative

::::::
alelle,

:
depending on the studied individual and the particular position in the genome23

(Günther and Nettelblad, 2019).24

Different strategies have been proposed to mitigate or remove the effect of mapping bias. These25

include mapping to an outgroup species (Orlando et al., 2013), mapping to multiple genomes simul-26

taneously (Huang et al., 2013; Chen et al., 2021), mapping to variation graphs (Martiniano et al.,27

2020), the use of an IUPAC reference genome (Oliva et al., 2021), masking variable sites (Koptekin28

et al., 2023) or filtering of “biased reads” (Günther and Nettelblad, 2019). All of these strategies have29

significant limitations, such as
:::
the

:
exclusion of some precious sequencing reads (outgroup mapping or30

filtering) or requiring additional data that may not be available for all species prior to the particular31

study (variation graphs, IUPAC reference genomes, or mapping to multiple genomes). Therefore, it32

would be preferable to develop a strategy that uses the available sequencing reads and accounts for33

potential biases in downstream analyses. Genotype likelihoods (Nielsen et al., 2011) represent one34

promising apporach
:::::::::
approach that can be used with low- and medium-depth sequencing data (Lou35

et al., 2021). Instead of working with hard genotype calls at each position one can use P (D|G), the36

probability of observing a set of sequencing reads D conditional on a true genotype G. Different37

approaches exist for calculating genotype likelihoods with the main aim to account
:
of

:::::::::::
accounting

:
for38

uncertainty due to random sampling of sequencing reads and sequencing error. Genotype likelihoods39

can be used in a wide range of potential applications for downstream analysis which include imputa-40

tion (Rubinacci et al., 2021), estimation of admixture proportions (Skotte et al., 2013; Jørsboe et al.,41

2017; Meisner and Albrechtsen, 2018), principal component analysis (PCA, Meisner and Albrechtsen,42

2018), relatedness analysis (Korneliussen and Moltke, 2015; Hanghøj et al., 2019; Nøhr et al., 2021), or43

to search for signals of selection (Korneliussen et al., 2013; Fumagalli et al., 2013). Many of these are44

available as part of the popular software package ANGSD (Korneliussen et al., 2014). However, some45

downstream results can depend on the specific genotype likelihood model selected (Lou et al., 2021).46

To render genotype likelihoods and their downstream applications more robust to the presence of47

mapping bias, we introduce a modified genotype likelihood, building off of the approach in Günther48

and Nettelblad (2019). We use modified reads carrying the other allele
:::::::
modify

::::::
reads

:::
to

:::::
carry

::::::
both49

::::::
alleles at biallelic SNP positions to assess the distribution of mapping bias and to obtain an empirical50

quantification of the locus- and individual-specific mapping bias. We then calculate a modified geno-51

type likelihood to account for mapping bias. The approach is similar to snpAD (Prüfer, 2018), with the52

contrast that
:::
we

:::
are

::::::
using

::
a

:::
set

:::
of

:::::::::::::::
pre-ascertained

::::::::
biallelic

::::::
SNPs

::::::::
because

:
our aim is not to call geno-53

types all sites and we are using a set of
::
at

:::
all

:::::
sites

::::::
across

::::
the

::::::::
genome

:::::::::
including

:::::::::::
potentially

:::::
novel

:::::::
SNPs.54
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:::::::::::
Restricting

::
to

:::::::
known

::::::::
biallelic

:::::
SNPs

::
is
::
a
:::::::::
common

::::::::
practice

::
in

::::
the

:::::::::::
population

::::::::
genomic

::::::::
analysis

::
of

::::::::
ancient55

:::::
DNA

:::::
data

::
as

:::::::::::::
low-coverage

::::
and

:::::::::::::
post-mortem

::::::::
damage

:::::::
usually

:::::
limit

::::
the

::::::::::
possibility

:::
of

::::::
calling

::::::
novel

::::::
SNPs56

:::
for

:::::
most

:::::::::::
individuals

::::::::::::::::::::::::::::::::::::::
(see e.g. Günther and Jakobsson, 2019)

:
,
::::
and

:::::::::
methods

::::
like

::::::
snpAD

:::
are

:::::::::
restricted

:::
to57

::::
very

::::
few

:::::
high

::::::::
quality,

:::::
high

:::::::::
coverage

:::::::::::
individuals

::::::::::::::
(Prüfer, 2018)

:
.
::::::::
Instead,

::::::
most

:::::::
studies

::::::
resort

:::
to

::::::
using58

::::::::::::::
pseudohaploid

:::::
calls

:::
or

:::::::::
genotype

:::::::::::
likelihoods

:::
at

:::::::
known

::::::::
variant

:::::
sites

:::::::::::::::::::::::::::::::
(Günther and Jakobsson, 2019)

:
;59

:::::
using

:
ascertained biallelic SNPs allowing

:
is

::::::::::::
particularly

::::::::
relevant

::::::
when

:::::::
ancient

::::::
DNA

::
is
:::::::::
enriched

::::::
using60

:
a
:::::
SNP

:::::::::
capture

::::::
array

::::::::::::::::::::::
(Rohland et al., 2022).

::::::
This

:::::::
choice

:::::
also

:::::::
allows

:
us to estimate mapping bias61

locus-specific rather than using one estimate across the full genome of the particular individual.62

We examine two downstream applications of genetic data to determine the impact of mapping bias,63

and assess the ability of our corrected genotype likelihood to ameliorate issues with mapping bias.64

First, we look at a very high-level summary of genetic variation: allele frequencies. Because allele65

frequencies can be estimated from high-quality SNP array data, we can use them as a control and66

assess the impact of mapping bias and our corrected genotype likelihood in real short-read data.67

Next, we examine the assignment of ancestry proportions. Most currently used methods trace their68

roots back to the software STRUCTURE (Pritchard et al., 2000; Falush et al., 2003, 2007; Hubisz et al.,69

2009), a model-based clustering approach modeling each individual’s ancestry from K source popula-70

tions (PSD
:::::::::::::::::::::::::::::
Pritchard-Stephens-Donnelley,

:::
or

::::::
PSD, model). These source populations can be inferred71

from multi-individual data (unsupervised) or groups of individuals can be designated as sources (su-72

pervised). Popular implementations of this model differ in terms of input data (e.g. genotype calls73

or genotype likelihoods), optimization procedure and whether they implement a supervised and/or74

unsupervised approach (Table 1). In the ancient DNA field, f statistics (Patterson et al., 2012) and75

their derivatives
:::::::::
functions

:::::::
derived

:::::
from

::::::
them are fundamental to many studies due to their versatility,76

efficiency and their ability to work with pseudohaploid data
:
,
::
in

:::::::
which

:
a
:::::::::
random

:::::
read

::
is

:::::
used

:::
to

::::
call77

:::::::
haploid

::::::::::
genotypes

:::
in

::::
low

:::::::::
coverage

:::::::::::
individuals. Consequently, methods based on f statistics are also78

often used for estimating
::
to

:::::::::
estimate

:
ancestry proportions in ancient DNA studies. One method that79

uses f statistics for supervised estimation of ancestry proportions is qpAdm (Haak et al., 2015; Harney80

et al., 2021). In addition to the source populations (“left” populations), a set of more distantly related81

“right” populations is needed for this approach. Ancestry proportions are then estimated from a set82

of f4 statistics calculated between the target population and the “left” and “right” populations. We83

simulate data sequencing data with realistic ancient DNA damage under a demographic model with84

recent gene flow (Figure 1) and then compare the different methods in their ability to recover the85

estimated admixture proportion and how sensitive they are to mapping bias.86

2 Materials and Methods87

2.1 Correcting genotype-likelihoods for mapping bias88

Two versions of genotype likelihoods (Nielsen et al., 2011) were calculated for this study. First, we89

use the direct method as included in the original version of GATK (McKenna et al., 2010) and also90

implemented in ANGSD (Korneliussen et al., 2014). For a position ℓ covered by n reads, the genotype91

likelihood is defined as the probability for observing the bases Dℓ = {bℓ1, bℓ2, . . . , bℓn} if the true92

genotype is A1A2:93

P (Dℓ|Gℓ = A1, A2) =

n∏
i=1

P (bℓi|Gℓ = A1, A2) =

n∏
i=1

P (bℓi|A1) + P (bℓi|A2)

2
(1)

with94

P (bℓi|A) =

{
1− eℓi if b = A
eℓi
3 if b ̸= A

where eℓi is the probability of a sequencing error of read i at position ℓ, calculated from the phred scaled95

base quality score Qℓi, i.e. eℓi = 10−Qℓi/10. The calculation of genotype likelihoods was implemented96
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in Python 3 using the pysam library (https://github.com/pysam-developers/pysam), a wrapper97

around htslib and the samtools package (Li et al., 2009)
:
,
:
or by calling samtoolsmpileup and parsing98

the output in the Python script.
:::::
Both

:::::::::
corrected

:::::
and

:::::::
default

:::::::::
genotype

:::::::::::
likelihoods

::::
are

:::::::::::
calculated

:::
by99

:::
the

::::::
same

:::::::
Python

:::::::
script.

:
100

To quantify the impact of mapping bias, we restrict the following analysis to
:
a
::::
list

::
of

::::::::::::
pre-defined101

ascertained biallelic SNPs
::::
(list

:::::::::
provided

::::
by

::::
the

::::::
user)

:
and modify each original read to carry the102

other allele at the SNP position, as in Günther and Nettelblad (2019). The modified reads are then103

remapped to the reference genome using the same mapping parameters. If there were no mapping104

bias, all modified reads would map to the same position as the unmodified original read. Consequently,105

when counting both original and modified reads together, we should observe half of our reads carrying106

the reference allele and the other half carrying the alternative allele at the SNP position. We can107

summarize the read balance at position ℓ as rℓ, which measures the proportion of reference alleles108

among all original and modified reads mapping to the position. Without mapping bias, we would109

observe rℓ = 0.5. Under reference bias, we would observe rℓ > 0.5 and under alternative bias rℓ < 0.5.110

We can see rℓ as an empirical quantification of the locus- and individual-specific mapping bias. Similar111

to Prüfer (2018), we can then modify equation
::::::::
Equation 1 for heterozygous sites to112

P (Dℓ|Gℓ = Rℓ, Aℓ) =
n∏

i=1

rℓP (bℓi|Rℓ) + (1− rℓ)P (bℓi|Aℓ) (2)

where Rℓ is the reference allele at position ℓ and Aℓ is the alternative allele. ::::
Note

:::::
that

::::::
when

:::::::
rl ≡ 1

2 ,113

::::
this

::::::::
recovers

:::::::::
Equation

::
1.

:
Genotype likelihood-based methods are tested with both genotype likelihood114

versions. All code used in this study can be found under https://github.com/tgue/refbias_GL115

2.2 Empirical Data116

To estimate the effect of mapping bias in empirical data we obtained low coverage BAM files for ten117

FIN individuals and 10 YRI
::::::::
(Finnish

::
in

:::::::::
Finland)

::::::::::::
individuals,

::::
ten

::::
JPT

:::::::::::
individuals

::::::::::
(Japanese

:::
in

:::::::
Tokyo,118

:::::::
Japan)

::::
and

::::
ten

::::
YRI

:::::::::
(Yoruba

::
in

::::::::
Ibadan,

:::::::::
Nigeria)

:
individuals from the 1000 Genomes project (

:::::::
mostly119

::::
2–4x

::::::::::
coverage; Table S1) (Auton et al., 2015). We also downloaded Illumina Omni2.5M chip genotype120

calls for the same individuals
:
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/121

supporting/hd_genotype_chip/ALL.chip.omni_broad_sanger_combined.20140818.snps.genotypes.122

vcf.gz
:
). The SNP data was filtered to restrict to sites without missing data in the 20

::
30

:
selected123

individuals, a minor allele frequency of at least 0.2 in the reduced dataset (considering individuals from124

both
::
all

:
populations together), and excluding

::::::
which

::::::
makes

:::
it

:::::
more

::::::
likely

:::::
that

:::
the

::::::
SNPs

::::
are

:::::::::
common125

::
in

:::
all

::::::::::::
populations

::::
and

:::::
both

:::::
over-

::::
and

::::::::::::::::
underestimation

:::
of

:::::
allele

:::::::::::
frequencies

::::::
could

:::
be

:::::::::
observed.

::::
We

:::::
also126

::::::::
excluded

:
A/T and C/G SNPs to avoid strand misidentification. Reads mapping to these positions127

were extracted from the BAM files using samtools (Li et al., 2009). To make the sequence data128

more similar to fragmented ancient DNA, each read was split into two halves at its mid-point and129

each sub-read was re-mapped separately. For mapping, we used bwa aln (Li and Durbin, 2009) and130

the non-default parameters -l 16500 (to avoid seeding), -n 0.01 and -o 2. Only reads with mapping131

qualities of 30 or higher were kept for further analysis.132

Pseudohaploid genotypes were called with ANGSD v0.933 (Korneliussen et al., 2014) by randomly133

drawing one read per SNP as described for the simulations below and only
:::::
with

::
a

::::::::::
minimum

:::::
base134

:::::::
quality

::
of

::::
30.

::::::
This

:::::
step

::::
was

:::::::::::
performed

::::::
using

::::::
ANGSD

:::::
with

::::
the

:::::::::::
parameters

:::::::::::::::::::
-checkBamHeaders

::
0
::::
(to135

::::::::::
deactivate

:::::::::
checking

::::
the

::::::::
headers

:::
of

::::
the

::::::
BAM

::::::
files)

:::::::::::::
-doHaploCall

:::
1

:::
(to

::::::::
sample

::
a
:::::::
single

:::::
base

::::::
only)136

::::::::::
-doCounts

::
1

::::::::
(needed

:::
to

::::::::::
determine

::::
the

:::::
most

:::::::::
common

::::::
base)

::::::::
-doGeno

:::
-4

::::
(to

:::::::
format

:::::::::
genotyles

:::
as

::::::
bases137

:::
not

::::::::
integers

:::
in

:::
the

::::::::
output)

::::::::
-doPost

::
2

:::::::::
(estimate

::::
the

:::::::::
posterior

:::::::::
genotype

:::::::::::
probability

::::::::::
assuming

::
a

::::::::
uniform138

:::::
prior,

::::::::
output

::::
files

::::
not

::::::
used)

:::::::::
-doPlink

::
2

:::::::::
(produce

:::::::
output

:::
in

::::::::::
tfam/tped

::::::::
format)

::::::::::::
-minMapQ

:::
30

:::
(to

::::
set139

:::
the

::::::::::
minimum

:::::::::
mapping

:::::::::
quality)

:::::::
-minQ

:::
30

:::
(to

::::
set

::::
the

::::::::::
minimum

:::::
base

::::::::
quality)

::::::::::::::::
-doMajorMinor

::
1
::::
(to140

::::
infer

:::::::
major

::::
and

:::::::
minor

:::::
from

::::::::::
genotype

::::::::::::
likelihoods)

:::::
-GL

::
2

::::
(to

:::::::::
calculate

:::::::
GATK

::::::::::
genotype

:::::::::::
likelihood,141

::::::
output

:::::
files

::::
not

::::::
used)

:::::::
-domaf

::
1

::::::::::
(calculate

:::::
allele

:::::::::::
frequencies

:::::
with

::::::
fixed

::::::
major

::::
and

:::::::
minor

::::::::
alleles).

:::::
This142

4
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Figure 1: Illustration of the population relationships used in the simulations. Branch lengths are not
to scale

:::
call

:::::
also

::::::::::
calculates

:::::::::
genotype

:::::::::::
likelihoods

:::
in

::::::
ANGSD

:::
but

:::
we

:::::
used

::::::
both

:::::::
default

::::
and

::::::::::
corrected

:::::::::::
likelihoods143

::::::::::
calculated

:::::
from

::::
our

::::
own

::::::::
Python

::::::
script

:::
to

:::::::
ensure

::::::::::::
consistency.

::::::::::
Haplocall

:::::
files

:::::
were

:::::
then

::::::::::
converted

:::
to144

::::::
Plink

::::::
format

::::::
using

:::::::::::::::
haploToPlink

::::::::::
distributed

::::::
with

::::::
ANGSD

::::::::::::::::::::::::::
(Korneliussen et al., 2014).

:::::::
Only

:
SNPs145

with the same two alleles in pseudohaploid and SNP chip data were included in all comparisons.146

Remapping of modified reads and genotype likelihood calculation were performed as described above.147

Allele frequencies were calculated from genotype likelihoods with ANGSD v0.933 (Korneliussen et al.,148

2014) using -doMaf 4 and the human reference as “ancestral” allele
:::::
(-anc)

:
in order to calculate the149

allele frequency of the reference alleles. SNP calls from the genotyping array and pseudohaploid calls150

were converted to genotype likelihood files assuming no genotyping errors , so the allele frequency151

estimation
:::
(i.e.

::::
the

::::::::::
genotype

:::::::::
likelihood

:::
of

::::
the

:::::::::
observed

:::::::::
genotype

::::
was

:::
set

:::
to

::::
1.0,

::::::
others

:::
to

::::
0.0

::::::::
whereas152

::
all

::::::
three

:::::::::::
likelihoods

:::::
were

:::
set

:::
to

::

1
3::
if

:::::
data

::::
was

::::::::
missing

:::
for

::::
the

::::
site

::::
and

::::::::::::
individual).

:::::
This

::::::::
allowed

:::
us

:::
to153

::::
also

::::::::
estimate

::::::
allele

::::::::::
frequency

::::::::::
estimates for this data could be based on

::::
with

:
ANGSDas well.154

2.3 Simulation of genomic data155

Population histories are
::
To

::::
test

::::
the

::::::::
methods

::::::
while

:::::::
having

:::::::
control

::::
over

::::
the

::::::
“true”

:::::::::::
admixture

::::::::::::
proportions,156

::::::::::
population

:::::::::
histories

:::::
were simulated using msprime v0.6.2 (Kelleher et al., 2016). We simulate

:::::::::
simulated157

a demographic history where a target population T receives a single pulse of admixture with propor-158

tion f from source S3 50 generations ago. Furthermore, we simulate
:::::::::
simulated

:
population S1 which159

forms an outgroup and population S2 which is closer to T than S3 to serve as second source for160

estimating ancestry proportions (Figure 1). Finally, we simulate
:::::::::
simulated

:
populations O1, O2, O3,161

and O4 as populations not involved in the admixture events which split off internal branches of the162

tree to serve as “right” populations for qpAdm (Haak et al., 2015; Harney et al., 2021). Split times are163

::::
were

:
scaled relative to the deepest split t123: the split between (S2, T ) and S3, t23, is set to 0.5× t123164

while the split between T and S2 is
::::
was set to 0.2× t123. Different values

::
To

::::
set

:::::
t123,:::

we
:::::::::::
considered165

:
a
::::::
value of 20,000

:::::::::::
generations,

::::::::::::::
approximately

:::::::
falling

:::
in

:::
the

::::::
range

:::
of

:::
the

:::::
split

:::
of

:::
all

:::::::
human

::::::::::::
populations166

::::::::::::::::::::::::
(Schlebusch et al., 2017)

::
or

::::
the

:::::::::::::::::::::::
Neanderthal-Denisovan

:::::
split

:::::::::::::::::::::
(Rogers et al., 2017)

:::
i.e.

:::::::::::::::
approximating167

:::
the

:::::::::::
divergence

::::::::
between

::::::::
distant

::::::::::::
populations

:::
or

::::::::::::
sub-species, and 50,000 generationsare tested for t123168

approximately corresponding to divergence times within and between (sub-)
:
,
::::::::::::::
corresponding

::::
to

::
a169

:::::::::::
comparison

::::::::
between

:::::::
closely

::::::::
related

:
species. Mutation rate was set to 2.5 × 10−8 and recombination170

rate was set to 2× 10−8,
::::::
which

::::
are

:::::
both

:::
in

:::
the

:::::::
upper

::::
part

:::
of

:::
the

:::::::
ranges

:::
for

::::::::::
mammals

::::
and

::::::::::::
vertebrates171

:::::::::::::::::::::::::::::::::::::::::::::::::
(Dumont and Payseur, 2008; Bergeron et al., 2023). The effective population size along all branches172

is
::::
was

:
10,000.

:::
000,

:::
a

::::::
value

:::::
often

:::::::::::
considered

::::
for

::::::::
humans

::::::::::::::::::::::
(Charlesworth, 2009).

::
For each popula-173

tion, 21 diploid individuals (i.e. 42 haploid chromosomes) with 5 chromosome pairs of 20,000,000 bp174
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::::::::::::::
(corresponding

:::
to

::
a

:::::
short

::::::::::::
mammalian

:::::::::::::
chromosome

:::::
arm,

::::::::::::::::::::
Lander et al. (2001)

:
) each were simulated.175

:::
As

::::::::
msprime

::::
does

::::
not

::::::::
produce

::::::::::
sequences

::::
but

:::::::::
positions

::
of

::::::::
derived

::::::
alleles

::
at

:::::
each

::::::::
haploid

:::::::::::::
chromosome,176

::
we

:::::
had

::
to

::::::::
convert

::::
this

:::::::::::
information

:::::
into

:
a
::::::::::
sequence.

:
For each chromosome, a random ancestral sequence177

was generated with a GC content of 41% corresponding to the GC content of the human genome178

(Lander et al., 2001). Transversion polymorphisms were then placed along the sequence according to179

::
at

::::
the

:::::::::
positions

::::::::::
produced

:::
by the msprime simulations. The first

:::::::::
resulting

::::::::::
sequences

:::
for

:::::
each

::::::::
haploid180

::::::::::::
chromosome

:::::
were

:::::
then

:::::::
stored

:::
as

:::::::
FASTA

::::::
files.

:::::
One

::
of

::::
the

:::
42

::::::::::
simulated

:
sequences from populations181

S1, S2 and S3 were used as reference genomes. Pairs of sequences
:::
Out

:::
of

::::
the

::::::::::
remaining

:::::::::::
sequences,182

:::::
pairs

::
of

::::::::
FASTA

:::::
files

:
were then considered as diploid individuals and

::::
used

:::
as

::::::
input

:::
for

:
gargammel183

(Renaud et al., 2017) was used to simulate
::
to

::::::
serve

::
as

::::::::::::
endogenous

::::::::::
sequences

:::
for

:::
the

:::::::::::
simulation

::
of

:
next-184

generation sequencing data with ancient DNA damage. Data were simulated to mimic data generated185

with an Illumina HiSeq 2500 sequencing machine assuming the post-mortem damage pattern observed186

when sequencing Neandertals in Briggs et al. (2007).
:::
We

::::::::::
simulated

::::::::::
coverages

::
of

::::::
0.5X

::::
and

::::::
2.0X.

:
For187

each individual, fragment sizes followed a log-normal distribution with a location between 3.3 and 3.8188

(randomly drawn per individual from a uniform distribution) and a scale of 0.2, corresponding to an189

average fragment length per individual between 27 and 46bp
::
46

:::
bp. Fragments shorter than 20bp

::
30190

::
bp

:
were excluded. No contaminating sequences were simulated. Sequencing reads were then trimmed191

and merged with AdapterRemoval (Schubert et al., 2016). Reads
:::
All

::::::
reads

::::::::
(merged

:::::
and

::::
the

::::::
small192

::::::::::
proportion

:::
of

:::::::::::
unmerged) were then mapped to the different reference genomes using bwa aln v0.7.17193

(Li and Durbin, 2009) together with the commonly used non-default parameters -l 16500 (to avoid194

seeding), -n 0.01 and -o 2
:::
(to

::::::
allow

:::
for

::::::
more

:::::::::::
mismatches

:::::
and

:::::
gaps

::::
due

:::
to

:::::::::::::
post-mortem

::::::::
damages

:::::
and195

:::::::::
increased

::::::::::::
evolutionary

:::::::::
distance

::
to

::::
the

::::::::::
reference)

:
(Schubert et al., 2012; Oliva et al., 2021). BAM files196

were handled using samtools v1.5 (Li et al., 2009).197

Genotype calling and downstream analysis were performed separately for the three reference genomes198

originating from populations S1, S2 and S3. To avoid ascertainment bias, polymorphic SNPs were199

ascertained
::
To

::::::::::
ascertain

:::::::
SNPs,

:::
we

:::::::::
avoided

::::
the

::::::
effect

:::
of

:::::::::
damage,

:::::::::::
sequencing

:::::::
errors

::::
and

::::::::::
genotype200

:::::::
callers,

:::
by

:::::::::::
identifying

::::::::
biallelic

::::::
SNPs

:::::::::
directly from the simulated true genotypes

::::::::::
genotypes,

::::::
prior

:::
to201

:::
the

:::::::::::
gargammel

::::::::::
simulation

::
of

::::::
reads

:::::
and

:::::::::
mapping,

:
and restricted to SNPs with a minimum allele fre-202

quency of 10% in the outgroup population S1.
::::
This

::::::::
mimics

:::
an

::::::::::::::
ascertainment

::::::::::
procedure

:::
in

:::::::
which203

:::::
SNPs

::::
are

::::::::::::
ascertained

:::
in

:::
an

::::::::::
outgroup

::::::::::::
population,

::::::
which

:::::
may

::::
be

:::::::::
common

:::
in

::::::
many

::::::
taxa.

::
100,000204

SNPs were selected at random using Plink v1.90 (Chang et al., 2015) –thin-count.
:::::::::
Genotype

:::::::
calling205

::::
and

::::::::::::
downstream

::::::::
analysis

:::::
were

::::::::::
performed

:::::::::::
separately

:::
for

::::
the

::::::
three

:::::::::
reference

:::::::::
genomes

:::::::::::
originating

:::::
from206

:::::::::::
populations

::::
S1,

:::
S2

:::::
and

:::
S3.

:
Pseudohaploid calls were then generated for all individuals at these sites207

using ANGSD v0.917 (Korneliussen et al., 2014) by randomly sampling a single read per position with208

minimum base and mapping quality of at least 30. This step was performed using ANGSD with the pa-209

rameters -checkBamHeaders 0 -doHaploCall 1 -doCounts 1 -doGeno -4 -doPost 2 -doPlink 2 -minMapQ210

30 -minQ 30 -doMajorMinor 1 -GL 1 -domaf 1. Files
::
as

::::::::::
described

::::
for

:::
the

::::::::::
empirical

:::::
data

::::::
above

:::::
and211

::::
files were then converted to Plink format using haploToPlink distributed with ANGSD (Korneliussen212

et al., 2014). For downstream analyses, the set of SNPs was further restricted to sites with less than213

50 % missing data and a minor allele frequency of at least 10% in S1, S2, S3 and T together. Binary214

and transposed Plink files were handled using Plink v1.90 (Chang et al., 2015). convertf (Patterson215

et al., 2006; Price et al., 2006) was used to convert between Plink and EIGENSTRAT file formats. Plink216

was also used for linkage disequilibrium (LD) pruning with parameters –indep-pairwise 200 25 0.7.217

2.4 Estimating admixture proportions218

We used five
::::
four

:
different approaches to estimate ancestry proportions in our target population T .219

In addition to differences in the underlying model and implementations, for users
:::::::::::::::
implementation,

:
the220

tools differ in the type of their input data (genotype calls or genotype likelihoods) and whether their221

approaches are unsupervised and/or supervised (Table 1).222

All software was set to estimate ancestry assuming two source populations. Unless stated otherwise,223

S2 and S3 were set as sources and T as the target population while no other individuals were included224
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Table 1: Overview of the different tools used for ancestry estimation.

Method Genotype calls Genotype-likelihoods Unsupervised Supervised Citation
ADMIXTURE X - X X Alexander et al. (2009);

Alexander and Lange
(2011)

qpAdm X - - X Haak et al. (2015); Harney
et al. (2021)

NGSadmix - X X - Skotte et al. (2013)
fastNGSadmix -* X - X Jørsboe et al. (2017)

* source populations for fastNGSadmix can be either genotype calls or genotype likelihoods

in when running the software. ADMIXTURE (Alexander et al., 2009; Alexander and Lange, 2011) is the225

only included method that has both a supervised (i.e. with pre-defined source populations) and an226

unsupervised mode. Both options were tested using the –haploid option without multithreading as the227

genotype calls were pseudo-haploid. For qpAdm (Haak et al., 2015; Harney et al., 2021), populations228

O1, O2, O3 and O4 served as “right” populations. qpAdm was run with the options allsnps: YES and229

details: YES. For fastNGSadmix (Jørsboe et al., 2017), allele frequencies in the source populations230

were estimated using NGSadmix (Skotte et al., 2013) with the option -printInfo 1. fastNGSadmix231

was then run to estimate ancestry per individual without bootstrapping. NGSadmix (Skotte et al.,232

2013) was run in default setting. The mean ancestry proportions across all individuals in the target233

population was used as an ancestry estimate for the entire population. In the case of unsupervised234

approaches, the clusters belonging to the source populations were identified as those where individuals235

from S2 or S3 showed more than 90 % estimated ancestry.236

3 Results237

3.1 Mapping
::::::::
Impact

:::
of

::::::::::
mapping

:
bias

::
on

:::::::
allele

:::::::::::
frequency

::::::::::::
estimates

:
in empirical data238

Differences in allele frequency estimates. Binned spectrum of non-reference alleles in FIN (A) and YRI239

(B) for the four different estimation methods. Note that the specific ascertainment of common SNPs240

in the joint genotyping data contributes to the enrichment of variants with intermediate frequencies.241

Boxplots for the differences between default genotype likelihood-based estimates and corrected genotype242

likelihood-based estimates, default genotype likelihood-based estimates and SNP array-based estimates,243

corrected genotype likelihood-based estimates, pseudohaploid (PH) genotype-based and SNP array-based244

estimates (C) in the FIN population and (D) in the YRI population. (E) is showing boxplots of the245

per-site population differentiation (measured as f2 statistic) for the four allele frequency estimates.246

We first tested the effect of mapping bias on allele frequency estimates in empirical data. We selected247

low to medium coverage (mostly between 2 and 4X depth
::::
2–4x

::::::::::
coverage, except for one individual at248

14X
:::
14x, Table S1) for ten individuals from each of two

:::::
three

:
1000 Genomes populations (FIN

:
,
:::::
JPT249

and YRI)
::::
from

:::::::::
different

:::::::::::
continents.

:::
All

:::::::::::
individuals

::::::
show

:::
an

:::::::::
empirical

::::
bias

:::::::::
towards

:::
the

:::::::::
reference

::::::
allele250

::
as

::::::::::
indicated

:::
by

::::::::
average

:::::::::
rL > 0.5

:::::::
(Tables

::::
S1

::::
and

::::
S2). We used ANGSD to estimate allele frequencies251

::::
from

::::::::::
genotype

:::::::::::
likelihoods

::::::
based

:::
on

::::::::::
short-read

:::::
NGS

:::::
data

::::::
(read

::::::::
lengths

::::::::
reduced

:::
to

:::::
36-54

::::
bp

::
to

:::::::
better252

::::::::
resemble

::::::::::::
fragmented

:::::::
aDNA

::::::
data)

:
and compare them to allele frequencies estimated from the same253

individuals genotyped using a SNP array and pseudohaploid genotype data. As the genotyping array254

::::
does

::::
not

:::::::
involve

::
a
:::::::::
mapping

:::::
step

::
to

::
a
:::::::::
reference

::::::::
genome

::
it
:
should be less affected by mapping bias, we255

consider these estimates as “true” allele frequencies.256

Overall, genotype likelihood-based point estimates of the allele frequencies tend towards more inter-257

mediate allele frequencies while pseudohaploid genotypes and “true” genotypes result in more alleles es-258

timated to have low and high alternative allele frequency (Figure 2A and B). In FIN, the pseudohaploid259

genotypes lead to a slight underestimation of the reference allele frequencies (Figure 2A), while this260

signal is reversed in YRI (Figure 2B), a pattern which could be related to the fact that most of the261
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Table 2:
:::::::::
Pearson’s

::::::::::::
correlation

:::::::::::
coefficients

::::::::::
comparing

:::::::::
different

::::::
allele

::::::::::
frequency

::::::::::
estimates

::
in

::::
the

::::::
three

:::::::::
empirical

::::::::::::
populations.

:::::
95%

:::::::::::
confidence

:::::::::
intervals

:::
are

:::::::
shown

::
in

:::::::::::::
parentheses.

:::::::::::
Population

::::
True

:::
vs

:::::::
default

::::
GL

:::::
True

:::
vs.

::::::::::
corrected

::::
GL

::::
True

:::
vs.

:::::::::::::::
Pseudohaploid

::::
FIN

: ::::::
0.8460

:
[0.9294, 0.9301

::::::
0.8453,

:::::::
0.8467] vs. 0.9310

::::::
0.8471

:
[0.9307, 0.9313

:::::::
0.8464,

:::::::
0.8478]for uncorrected and corrected, respectively; p = 2.14× 10−7) and YRI (Pearson’s correlation coefficient 0.9444

::::::
0.8509

:
[0.9442, 0.9447

:::::::
0.8502,

:::::::
0.8515]vs. 0.9459

::::
YRI

: ::::::
0.8246

:
[0.9457, 0.9462

:::::::
0.8238,

:::::::
0.8254] for uncorrected and corrected, respectively; p = 1.8× 10−14). Notably, allele frequency estimates from pseudohaploid data display the lowest correlation with the

::::::
0.8258

:
[
::::::
0.8250,

:::::::
0.8266]

::::::
0.8337

:
[
::::::
0.8330,

:::::::
0.8345]

:::::
JPT

::::::
0.8466

:
[
:::::::
0.8459,

:::::::
0.8474]

::::::
0.8474

:
[
::::::
0.8466,

:::::::
0.8481]

::::::
0.8687

:
[
::::::
0.8681,

:::::::
0.8693]

human reference genome has European ancestry (Green et al., 2010; Church et al., 2015; Günther and Nettelblad, 2019)262

. In both
::::
S1).

:::
In

:::
all tested populations, the default version of genotype likelihood calculation produced263

an allele frequency distribution slightly shifted towards lower non-reference allele frequency estimates264

:::::::::
compared

:::
to

::::
the

::::::::::
corrected

::::::::::
genotype

::::::::::
likelihood

:
(Paired Wilcoxon test p < 2.2 × 10−22 in both

:::
all265

populations). The
::::::::::::
Consistently,

::::
the

::::::::
per-site

:
allele frequencies estimated from the corrected genotype266

likelihoods exhibit a slightly better correlation with the “true” frequencies in both FIN (Pearson’s267

correlation coefficient 0.9297
::::::
(Table

::::
2).

:::::::
Allele

::::::::::
frequency

:::::::::
estimates

::::::
from

::::::::::::::
pseudohaploid

:::::
data

::::::::
display268

:::
the

:::::
best

:::::::::::
correlation

:::::
with

:::
the

:::::::
“true”

:::::::::::
frequencies

:::
in

:::
all

::::::::::::
populations

:::::::
(Table

:::
2).

:
269

::::::::
Overall,

::::
the

::::::::
per-site

:::::::::::
differences

:::::::::
between

:
“true” frequencies in both FIN (r = 0.8571) and YRI270

(r = 0.8344) indicating that while the distribution of allele frequencies seems close to the true spectrum271

(Figure2A and B), the estimates at individual loci are rather noisy.272

Differences at individual sites, however, display some extreme outliers with ∼ 0.1% of the SNPs273

showing more than 50% difference between estimates from SNP chips and sequencing data, which could274

hint at systematic technological differences between the two data types at those sites. This pattern275

of outliers is slightly less pronounced when using the corrected genotype likelihoods (Table ??)
:::::
allele276

::::::::::
frequencies

:::::
and

:::
all

::::::::::::
frequencies

::::::::::
estimated

:::::
from

::::::
NGS

:::::
data

:::::::::::::::::::::
(genotype-likelihoods

::::
and

::::::::::::::::
pseudohaploid)277

:::::
show

:
a
::::::
trend

::::::::
towards

::::::
lower

::::::::::
estimated

:::::::::::::
non-reference

::::::
alleles

:::
in

:::
the

::::::
NGS

::::
data

::::::::
(Figure

:::::::
2A-C),

:::::::::::
suggesting278

::
an

::::::::
impact

:::
of

:::::::::
mapping

:::::
bias.

::::::::::
Outliers

:::::
even

::::::
reach

::
a
::::::::::
difference

:::
of

::::
up

:::
to

::::
-1.0. Interestingly, despite279

the overall closer concordance between the pseudohaploid allele frequency spectrum and the SNP280

array allele frequency spectrum, there is significantly higher variation between pseudohaploid and true281

frequencies at any particular hint
::::::::
per-site

:::::::
(Figure

:::::::
2A-C), suggesting that this is a general difference282

between NGS and SNP chip data. In Günther and Nettelblad (2019), we found that different parts283

of the human reference genome exhibit different types of mapping bias. We find a similar result here:284

the parts of the reference genome that can be attributed to African ancestry (Green et al., 2010)285

display a mean and median difference of nearly 0 in FIN but allele frequencies remain higher than286

array estimates in YRI (Figure S2). In contrast, the European and East Asian parts of the reference287

genome show a distribution of differences around 0 in YRI but positive means and median in FIN288

(Figures S3 and S4). This confirms the utility of reducing the effect of mapping bias by mapping289

against a reference genome from an outgroup
:::::
allele

::::::::::
frequency

:::::::::
estimates

::::::
from

::::::::::::::
pseudohaploid

:::::
calls

::::
are290

:::::::::
relatively

::::::
noisy

::::
but

::::
also

::::::::::
relatively

:::::::::
unbiased. A consequence of the systematic over-estimation of the291

allele frequencies when using genotype likelihoods is that the population differentiation (here measured292

as f2 statistic) is reduced compared to estimates from the SNP array or pseudohaploid genotype293

calls (Figure 2E
::::::
D-F).

::
In

:::::::::::::::::::::::::::::::
Günther and Nettelblad (2019)

:
,
:::
we

::::::
found

:::::
that

::::::::
different

::::::
parts

:::
of

:::
the

::::::::
human294

::::::::
reference

::::::::
genome

::::::::
exhibit

::::::::
different

::::::
types

:::
of

:::::::::
mapping

::::
bias

:::
in

::::
the

:::::::::::
estimation

::
of

::::::::
archaic

::::::::
ancestry

:::::::
which295

:::::
could

:::
be

:::::::::::
attributed

:::
to

::::
the

::::
fact

:::::
that

::::
the

:::::::
human

::::::::::
reference

::::::::
genome

::
is

::
a

:::::::
mosaic

:::
of

:::::::::
different

::::::::::
ancestries296

::::::::::::::::::::::::::::::::::::::
(Green et al., 2010; Church et al., 2015)

:
.
:::::::
Here,

:::
we

::::
do

::::
not

:::::
find

:::::::::::
substantial

:::::::::::
differences

:::
in

::::
the

::::::
allele297

:::::::::
frequency

:::::::::
patterns

::::::::
between

::::
the

:::::::::
different

:::::::::::
continental

::::::::::
ancestries

:::::::::
(Figures

::::::
S2-S4).298

3.2 Estimation of admixture proportions based on genotype calls
::
in

:::::::::::
simulated

::::::
data299

We compare the accuracy of the different methods for estimating admixture proportion under a set300

of different population divergence times, sequencing depths, and with or without LD pruning of the301

SNP panel.
:::::::::
Mapping

:::
to

:::::
three

:::::::::
different

:::::::::
reference

::::::::::
genomes,

::::
one

:::::
from

::::
an

:::::::::
outgroup

:::::
(S1)

:::::
and

:::
the

:::::
two302
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Figure 2:
:::::::::::
Differences

:::
in

::::::
allele

::::::::::
frequency

:::::::::::
estimates.

:::::::::::
Boxplots

::::
for

::::
the

:::::::::::
differences

:::::::::
between

::::::::
default

:::::::::
genotype

::::::::::::::::
likelihood-based

::::::::::
estimates

:::::
and

::::::::::
corrected

::::::::::
genotype

:::::::::::::::::
likelihood-based

::::::::::
estimates,

:::::::
default

::::::::::
genotype

::::::::::::::::
likelihood-based

::::::::::
estimates

:::::
and

::::::
SNP

::::::::::::
array-based

:::::::::::
estimates,

::::::::::
corrected

:::::::::
genotype

:::::::::::::::::
likelihood-based

:::::::::::
estimates,

::::::::::::::::
pseudohaploid

::::::
(PH)

:::::::::::::::::
genotype-based

:::::
and

::::::
SNP

:::::::::::
array-based

::::::::::
estimates

:::::
(A)

:::
in

::::
the

:::::
FIN

::::::::::::
population,

::::
(B)

:::
in

:::::
the

:::::
YRI

:::::::::::
population

:::::
and

::::
(C)

::
in

::::
the

:::::
JPT

::::::::::::
population.

:::::::
(D-F)

::::
are

:::::::::
showing

:::::::::
boxplots

:::
of

::::
the

:::::::::
pairwise

::::::::
per-site

:::::::::::
population

:::::::::::::
differentiation

:::::::::::
(measured

:::
as

::
f2::::::::::

statistic)
:::
for

::::
the

::::
four

::::::
allele

::::::::::
frequency

::::::::::
estimates.
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::::::::
ingroups

:::::
also

::::::::::::
representing

::::
the

::::::::
sources

:::
of

::::
the

::::::::::
admixture

::::::
event

:::::
(S2

::::
and

:::::
S3),

:::::::
allows

:::
us

::
to

::::
use

::::
S1

:::
as303

:
a
::::::::
control

::::::
which

::::::::
should

::::
not

:::
be

::::::::
affected

::::
by

:::::::::
mapping

:::::
bias

::::
and

:::::
only

::::::
other

::::::::
aspects

:::
of

::::
the

::::::
data.

:::::
We304

::::::
expect

:::::
that

:::::::::
mapping

::::::
reads

::
to

::::
one

:::
of

:::
the

::::::::
sources

::::
will

::::::
cause

:
a
:::::::::::
preference

:::
for

::::::
reads

::::::::
carrying

:::::::
alleles

:::::
from305

::::
that

:::::::::::
population

:::
at

:::::::::::::
heterozygous

::::
sites

:::::
and,

::::::::::::::
consequently,

:::
an

::::::::::::::
overestimation

:::
of

:::
the

:::::::::
ancestry

:::::::::::
proportion306

::::::::::
attributed

:::
to

::::
that

::::::::::::
population.

:::::
The

:::::::::
distance

::::::::
between

::::
the

::::::::::
estimates

::::::
when

::::::::
mapped

:::
to

:::
S2

:::
or

::::
S3

:::::
(and307

:::::
their

:::::::::
distances

::
to

::::
the

:::::::
results

::::::
when

:::::
using

::::
S1)

::::
can

:::::
then

:::
be

:::::
seen

::
as

:::
an

:::::::::
estimate

::
of

::::
the

::::::
extent

:::
of

:::::::::
mapping308

::::
bias.

:
309

For most parts of this results section, we will focus on the scenario with an average sequencing310

depth of 0.5X where the deepest population split (t123) was 50,000 generations ago and the split311

(t23) between the relevant sources dating to 25,000 generations ago. Consequently, mapping the312

reads against a reference genome sequence from one or the other source would be equivalent to a313

study comparing (sub-)species where the reference genome originated from one of those populations.314

Results for other population divergences and sequencing depths are shown in Figures S5-S10.315

We begin by assessing methods that require hard genotype calls, ADMIXTURE and qpAdm. For these316

approaches, we used single randomly drawn reads per individual and site to generate pseudo-haploid317

data in the target population. The popular implementation of the PSD (Pritchard et al., 2000) model318

working with SNP genotype calls, ADMIXTURE (Alexander et al., 2009; Alexander and Lange, 2011),319

has both supervised and unsupervised modes. Both modes show similar general patterns: low (10%)320

admixture proportions are estimated well while medium to high (≥ 50%) admixture proportions321

are over-estimated (Figure 3). On the full SNP panel, the median estimated admixture proportion322

differs up to ∼ 4% when mapping to reference genomes representing either of the two sources (S2 or323

S3) while mapping to the outgroup reference genome (S1) results in estimates intermediate between324

the two
::::::
(Data

::::
S1). LD pruning slightly reduces mapping bias and reduces the overestimation, at325

least for high (90%) admixture proportions. qpAdm (Haak et al., 2015; Harney et al., 2021), on the326

other hand, estimated all admixture proportions accurately when the outgroup (S1) was used for the327

reference genome sequence and when the full SNP panel was used. The median estimates of admixture328

differed up to 3% between mapping to reference genomes from one of the source populations (S2 or329

S3). Notably, LD pruning increased the noise of the qpAdm estimates (probably due to the reduced330

number of SNPs) and led to all admixture proportions being slightly underestimated (Figure 3).331

The extent of mapping bias decreases with lower population divergence
::::::::
between

::::
the

:::::::
sources

:
across all332

methods (Figure S5), as mapping bias should correlate with distance to the reference genome sequence.333

Conversely, increasing sequencing depth mostly reduced noise but not mapping bias (Figures S6 and334

S9) as the genotype-based methods benefit from the increased number of SNPs but the genotype calls335

do not increase certainty when multiple reads are mapping to the same position.336

3.3 Estimation of admixture proportions based on genotype likelihoods
::
in

::::::::::::
simulated337

::::
data338

We next examined the performance of genotype-likelihood-based approaches to estimate admixture339

proportions. In principle, genotype likelihoods should be able to make better use of all of the data in340

ancient DNA, because more than a single random read can be used per site. Moreover, we are able341

to explicitly incorporate our mapping bias correction into the genotype likelihood. We compared the342

supervised fastNGSadmix (Jørsboe et al., 2017) to the unsupervised NGSadmix (Skotte et al., 2013).343

fastNGSadmix shows the highest level of overestimation of low to medium admixture proportions344

(≤ 50%) among all tested approaches while high admixture proportions (90%) are estimated well345

(Figure 4). Mapping bias caused differences of up to ∼ 3% in the admixture estimates when mapping346

to the different reference genomes. LD pruning enhances the overestimation of low admixture propor-347

tions while leading to an underestimation of high admixture proportions
::::::
(Data

::::
S1). Notably, when348

employing the corrected genotype-likelihood the estimated admixture proportions when mapping to349

S2 or S3 are slightly more similar than with the default formula without correction, showing that the350

correction makes the genome-wide estimates less dependent on the reference sequence used for map-351

ping while not fully removing the effect. The estimates when using the outgroup S1 as reference are352
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Figure 3: Simulation results for genotype call based methods using t123 = 50000 generations and a
sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture proportions.

slightly higher for high admixture proportions (90%). The results for NGSadmix show similar patterns353

to ADMIXTURE with a moderate overestimation of admixture proportions ≥ 50% (Figure 4). Mapping354

bias caused differences of up to ∼ 4% in the admixture estimates when mapping to the different355

reference genomes. After LD pruning, estimated admixture proportions for higher simulated values356

were closer to the simulated values. Furthermore, employing the mapping bias corrected genotype-357

likelihoods made the estimated admixture proportions less dependent on the reference genome used358

during mapping
:
,
::::::::::::
particularly

:::::
when

::::::
using

::::::::::
NGSadmix

::
in

::::::::
pruned

:::::
data,

::::::
where

:::
all

::::::
three

:::::::::
reference

:::::::::
genomes359

::::::::
produce

::::::
nearly

:::::::::
identical

::::::::
results. Notably, the extent of over-estimation for both methods seems to360

be somewhat negatively correlated with population divergence (Figures S7 and 4), i.e. increased dis-361

tances between the source populations reduces the method bias. Further patterns are as expected:362

the extent of mapping bias is correlated with population divergence and increased sequencing depth363

reduces noise (Figures S7, 4, S8 and S10).364

4 Discussion365

We illustrate the impacts of mapping bias on downstream applications, such as allele frequency esti-366

mation and ancestry proportion estimation, and we introduced a new approach to recalibrate genotype367

likelihoods in the presence of mapping bias to alleviate its effects. The impact of mapping bias in368

our comparisons is small but pervasive suggesting that it can have an effect on the results of different369

types of analysis in empirical studies.
::
In

::::::::
contrast

:::
to

:::::
other

::::::::::::
approaches

::
to

:::::::::
alleviate

:::::::::
mapping

:::::
bias,

:::::
such370

::
as

::::::::::
employing

::::::::::::
pangenome

:::::::::
variation

:::::::
graphs

:::::::::::::::::::::::::::::::::::::::::::::
(Martiniano et al., 2020; Koptekin et al., 2023)

:
,
::
it

:::::
does

::::
not371

:::::::
require

::::::::::::
establishing

::
a

:::::::::
separate

:::::::::
pipeline.

:::::::::
Instead,

:::::
only

::::::
reads

:::::::::
mapping

:::
to

::
a
::::
set

:::
of

:::::::::::
ascertained

::::::
SNP372

::::::::
positions

::::::
need

:::
to

:::
be

:::::::::
modified

::::
and

:::::::::::
remapped

::::::
which

:::::
only

::::::::::
represents

:::::
only

::
a
:::::::::
fraction

::
of

:::
all

::::::
reads

:::::
and373

::::::::::::
consequently

::::
will

::::::::
require

:
a
::::::
small

:::::::::::
proportion

::
of

::::
the

::::::::
original

:::::::::
mapping

:::::
time.

:::::
Our

:::::::
Python

:::::::
scripts

:::::
used

:::
to374

::::::::
calculate

::::
the

:::::::::
genotype

:::::::::::
likelihoods

::::::
could

:::
be

::::::::::
optimized

::::::::
further,

::::
but

::::
this

::::
step

:::
is

::
of

::::::
minor

:::::::::::::::
computational375

:::::
costs

::::::::::
compared

::
to

::::::
other

::::::
parts

::
of

::::
the

:::::::
general

::::::::::::::
bioinformatic

:::::::::
pipelines

::::
(∼1

:::::::
minute

::::
per

::::::::::
individual

:::
in

::::
the376

:::::::::
empirical

:::::
data

::::::::
analysis

::::
for

::::
this

:::::::
study)

::
in

::::::::
ancient

::::::
DNA

:::::::::
research.

:::::
The

:::::::::
corrected

::::::::::
genotype

:::::::::::
likelihoods377
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Figure 4: Simulation results for genotype likelihood based methods using t123 = 50000 generations and
a sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture proportions.

:::
can

:::::
then

:::
be

::::::::
directly

:::::
used

:::
in

::::::::::::
downstream

::::::::
analyses

::::::
using

::::
the

:::::
same

::::
file

::::::::::
structures

::::
and

::::::::
formats

:::
as

::::::
other378

:::::::::
genotype

::::::::::::::::
likelihood-based

::::::::::::
approaches.

:
379

Increasing sample sizes in ancient DNA studies have motivated a number of studies aiming to detect380

selection in genome-wide scans or to investigate phenotypes in ancient populations (e.g. Mathieson381

et al., 2015; Cox et al., 2022; Klunk et al., 2022; Gopalakrishnan et al., 2022; Mathieson and Terhorst,382

2022; Davy et al., 2023; Barton et al., 2023; Hui et al., 2024). Such investigations are potentially very383

sensitive to biases and uncertainties in genotype calls or allele frequencies at individual sites while384

certain effects will average out for genome-wide estimates such as ancestry proportions. Concerns385

about certain biases and how to estimate allele frequencies have even reduced confidence in the results386

of some studies
::::::::
searching

::::
for

::::
loci

::::::
under

:::::::::
selection

:
(Gopalakrishnan et al., 2022; Barton et al., 2023).387

Our results indicate that such concerns are valid as individual sites can show very strong deviations388

in their allele frequencies
::::
when

::::::
allele

::::::::::::
frequencies

::::
are

:
estimated from low-coverage sequencing data389

:::::::
(Figure

:::
2). This is due to a combination of effects, including mapping biasand sampling artifacts.390

Allele frequency point estimates from genotype likelihoods tend to be higher than true frequencies391

because most alleles segregate at low frequencies, and thus appear most commonly in heterozygotes.392

However
:
.
:::::::::
Without

:::::
high

:::::::::
coverage

::::::
data, genotype likelihood approaches without an allele frequency393

prior will naturally put some weight on individuals being homozygous for the allele
::
all

::::::
three

:::::::::
potential394

:::::::::
genotypes

:::
at

::
a

:::
site, ultimately collectively driving up allele frequency estimates

:::::
allele

::::::::::
frequency

::
to

::::::
more395

::::::::::::
intermediate

:::::::
values. The risk is then that most downstream analyses will treat the allele frequency396

point estimates as face values
::
at

:::::
face

::::::
value,

:
potentially leading to both false positives and negatives.397

While our new approach to recalibrate genotype likelihoods reduces the number of outlier loci, there398

is still uncertainty in allele frequency estimates from low coverage data. Therefore, results heavily399

relying on allele frequency estimates or genotype calls at single loci from low-coverage sequencing data400

or even ancient DNA data need to be taken with a grain of salt.401

The simulations in this study revealed a modest but significant
:::::::::
noticeable

:
effect of mapping bias on402

ancestry estimates as the difference between reference genomes never exceeded 5 percent.
::
In

:::::::::::
particular,403

::
we

:::::::
found

::::
that

:::::::::
mapping

:::::
bias

::::
and

::::::::
method

:::::
bias

:::::
even

:::::::::::
counteract

:::::
each

:::::
other

:::
in

:::::::
certain

::::::
cases,

::::::::
leading

:::
to404

::::::
better

::::::::::
estimates

::
of

::::
the

:::::::::::
admixture

:::::::::::
proportion

::::::
when

:::::::::
mapping

:::
to

::::
one

::
of

::::
the

:::::::::
sources.

:
The differences405

seen in our simulations are likely underestimates of what might occur in empirical studiesas
:
,
::::::::
because406

real genomes are larger and more complex than what was
::
we

:
used in the simulations. For instance, we407

simulated five 20 megabase long chromosomes for a 100 megabase genome, while mammalian genomes408
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are one order of magnitude larger; the human genome is roughly 3 gigabases and the shortest human409

chromosome alone is ∼45 megabases long. Furthermore, the only added complexity when generating410

the random sequences was a GC content of 41%. Real genomes also experience more complex mutation411

events involving translocations and duplications, which, together with the increased length and the412

presence of repetitive elements, should increase mapping bias in empirical studies. Finally, the range413

of possible demographic histories including the relationships of targets and sources, drift as well as414

:::
the

::::::::
amount

:::
of

::::::
drift,

::::
and

:
the timing and number of gene flow

::::::
events

:
is impossible to explore in a415

simulation study. The restricted scenarios tested in this study should affect the quantitative results416

but the qualitative interpretation of mapping bias impacting ancestry estimates should extend beyond417

the specific model used in the simulations.418

While the ancestry estimates depended slightly on the reference genome the reads were mapped to,419

they seemed more influenced by the choice of method or software. Methods easily differed by more420

than 10% in their ancestry estimates from the same source data. This highlights that other factors421

and biases play major roles in the performance of these methods. Depending on the method, the422

type of input data,
:
and the implementation, they showed different sensitivities to e.g.

::::::
linkage

:::
or

:
the423

amount of missing data or linkage
:::::::
(which

::::
was

:::
on

::::::::
average

:::::::
∼37%

::::
per

:::::
SNP

::::
for

:::
the

:::::
0.5x

:::::
and

:::::
∼3%

::::
for424

:::
the

:::::
2.0x

::::::::::::
simulations). For non-pruned data, qpAdm performed best across all scenarios and did not425

show any method-specific bias in certain ranges of simulated admixture proportions. This supports426

::::::::
Multiple

:::::::::::
differences

::::::::
between

::::
the

:::::
PSD

::::
and

::::::
qpAdm

::::::::
methods

:::::
may

:::::
have

:::::::::::
contributed

:::
to

::::
the

:::::::
relative

:::::::
biases427

::
we

::::::::::
observed.

::::::
PSD

::::::::
models

:::::
may

::::::::::
propagate

::::::::::::::::
allele-frequency

::::::::::::::
misestimation

::::::
more

:::::
than

::::::
qpAdm

::::::::
because428

::
of

:::::
their

:::::::::::::
assumptions

:::
of

:::::::
linkage

::::::::::::
equilibrium

::::
and

:::::::::::::::::
Hardy-Weinberg

::::::::::::
equilibrium.

:::::::::
Indeed,

::::
we

:::::::::
observed429

::::
that

::::
LD

:::::::::
pruning

::::::::::
improved

::::
the

:::::::::::::
performance

::
of

::::::
PSD

::::::::
models,

:::::
but

:::::
they

::::
are

:::::::
known

:::
to

::::
be

:::::::::
sensitive430

::
to

:::::::
sample

:::::
size

::::
and

:::::
drift

::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Lawson et al., 2018; Toyama et al., 2020).

:::::::
More

::::::::::
generally,

::::::::
because

:::
it431

:
is
:::::::
based

:::
on

::::::::::::
Patterson’s

::
f

:::::::::
statistics

:::::::::::::::::::::::
(Patterson et al., 2012)

:
,
:::::::
qpAdm

::::::::
estimates

:::::::::
ancestry

::::::
from

::::::::
relative432

:::::::::::
differences.

::
If

:::::::::
mapping

:::::
bias

:::::::
affects

:::
all

::::::::::::
populations

:::::::::
similarly,

:::::
then

::::::
their

:::::::
relative

:::::::::::::
relationships

::::::::
remain433

:::::
more

:::::::
stable.

::::
In

:::::::::
contrast,

::::::
PSD

:::::::
models

::::::::::::
reconstruct

::::::
exact

::::::
allele

:::::::::::
frequencies

::::
for

::::
the

:::::::::
putative

:::::::
source434

:::::::::::
populations

:::::::::
therefore

:::::::::::::
emphasizing

::::
the

:::::::
impact

:::
of

:::::::::
mapping

:::::
bias.

:::::::::
Finally,

:::
the

:::::::::
ancestry

::::::::::::
proportions

:::
of435

::::
PSD

::::::::
models

:::
are

::::::::::::
constrained

::
to

:::::
[0, 1]

::::::
which

::
is
::::
not

::::
the

::::
case

:::
for

:::::::
qpAdm.

::::::::
Indeed,

:::
we

::::
see

::::::::
negative

::::::::::
estimates436

::
in

::
a

::::::
small

::::::::
number

::
of

::::::::::::
simulations

:::
(3

:::::
runs

:::::
with

:::::
0.5X

::::::
depth

::::
and

:::::::
50,000

::::::::::::
generations

::::::::::::
divergence).

::::::
This437

::::::::::::
(biologically

:::::::::::
unrealistic)

::::::::::
flexibility

:::
of

:::::::
qpAdm

:::::::::
compared

:::
to

::::::
PSD

:::::::
models

:::::::
drives

::::
the

::::::
mean

:::::::::::
estimated438

::::::::::
admixture

:::::::::::
admixture

:::::::::::
proportion

:::::::
down,

::::::
which

::::::
may

::::::::
account

::::
for

::::::
some

::
of

:::::
the

::::::::::
reduction

:::
in

::::::::
upward439

:::::::
method

:::::
bias

::::::::::
compared

::
to

::::
the

::::::
other

:::::::::
methods.

:
440

::::::::
Broadly

:::::::::
speaking,

::::
our

:::::::
results

::::::::
support

:
the common practice of using qpAdm in most human ancient441

DNA studies. However, the requirement of data from additional, “right” populations, might not442

make it applicable
::::
may

:::::
make

:::
it

::::::::
difficult

:::
to

::::::
apply

:
to many non-human species. Furthermore, qpAdm443

only works with genotype calls, so it is influenced by mapping bias in similar ways as ADMIXTURE444

and these methods cannot benefit from the newly introduced genotype likelihood estimation. We445

also need to note that we tested qpAdm under almost ideal settings in our simulations with left and446

right populations clearly separated and without gene flow between them. More thorough assessments447

of the performance of qpAdm can be found elsewhere (Harney et al., 2021; Yüncü et al., 2023). In448

our simulations, unsupervised PSD-model approaches (ADMIXTURE, NGSadmix) work as well as or even449

better than supervised PSD-model approaches (ADMIXTURE, fastNGSadmix) in estimating the ancestry450

proportions in the target population. ADMIXTURE and NGSadmix benefit from LD pruning while LD451

pruning increases the method bias for fastNGSadmix and introduces method bias for qpAdm.452

Genotype likelihood-based methods for estimating ancestry proportions are not commonly used453

in human ancient DNA studies (but they
:::::::::
genotype

:::::::::::
likelihoods

:
are popular as input for imputation454

pipelines). This may be surprising, because genotype-likelihood-based approaches are targeted at low455

coverage data, exactly as seen in ancient DNA studies. However, the definition of “low coverage” differs456

between fields. While most working with modern DNA would understand 2-4X
::::
2-4x

:
as “low depth”,457

the standards for ancient DNA researchers are usually a lot
:::::::::
typically

:::::
much

:
lower due to limited DNA458

preservation. Genotype likelihood methods perform much better with >1X
::
1x

:
coverage, an amount459
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of data that is not within reach for most ancient DNA samples investigated so far (Mallick et al.,460

2023). The large body of known, common polymorphic sites in human populations allows the use of461

pseudohaploid calls at those positions instead. Nonetheless, this study highlights that unsupervised462

methods employing genotype-likelihoods (NGSadmix) can reach similar accuracies as methods such463

as ADMIXTURE that require (pseudo-haploid) genotype calls. Moreover, methods that incorporate464

genotype likelihoods have the added benefit that the modified genotype likelihood estimation approach465

can be used to reduce the effect of mapping bias. Furthermore, if some samples in the dataset have >1X466

::
1x

:
depth, genotype likelihood-based approaches will benefit from the additional data and provide more467

precise estimates of ancestry proportions while pseudo-haploid data will not gain any information from468

more than one read at a position. Finally, genotype likelihoods are very flexible and can be adjusted for469

many other aspects of the data. For example, variations of genotype likelihood estimators exist that470

incorporate the effect of post-mortem damage (Hofmanová et al., 2016; Link et al., 2017; Kousathanas471

et al., 2017) allowing to use of all sequence data without filtering for potentially damaged sites or472

enzymatic repair of the damages in the wet lab.473

As the main aim of this study was to show the general impact of mapping bias and introduce474

a modified genotype likelihood, we opted for a comparison of some of the most popular meth-475

ods with a limited set of settings. This was done in part to limit the computational load of this476

study. We also decided to not set this up as a systematic assessment of different factors influenc-477

ing mapping bias. The effects of fragmentation (Günther and Nettelblad, 2019) and deamination478

damage (Martiniano et al., 2020)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(shorter fragments increasing bias, Günther and Nettelblad, 2019)

:
,479

::::::::::::
deamination

::::::::
damage

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(deamination increasing the number of mismatches and bias, Martiniano et al., 2020)480

::::
and

:::::::::
mapping

::::::::::::::::::::::
algorithm/parameters

:::::::::::::::::::::
(Dolenz et al., 2024) on mapping bias have been explored else-481

where. Our
:::::::::::
simulations

:::::
were

::::::::::
restricted

:::
to

::::
one

:::::::::
mapping

:::::::::
software

:
(
::::
bwa

::::
aln

:
)
::::
and

::::
the

:::::::::::
commonly

:::::
used482

::::::::
mapping

::::::::
quality

::::::::::
threshold

:::
of

::::
30.

::::::::::
Mapping

::::::::
quality

::::::::::::
calculations

::::::
differ

:::::::::::::
substantially

:::::::::
between

::::::
tools483

::::
and

:::::::::::
algorithms

:::::::
making

::::::
their

:::::::
impact

:::
on

::::::::::
mapping

::::
bias

::::
not

::::::::
directly

::::::::::::
comparable

:::::::::::::::::::::
(Dolenz et al., 2024)484

:
.
:::::
For

::::
bwa

::::
aln

::::::::::::::::::::::
(Li and Durbin, 2009),

:::
it

::::
has

::::::
been

::::::::::
suggested

:::::
that

::
a
:::::::::
mapping

::::::::
quality

::::::::::
threshold

:::
of485

::
25

:::::
(the

::::::
value

:::::::::
assigned

:::::::
when

::::
the

:::::::::::
maximum

::::::::
number

:::
of

::::::::::::
mismatches

:::
is

:::::::::
reached)

::::::::
reduces

::::::::::
mapping486

::::
bias

::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Martiniano et al., 2020; Dolenz et al., 2024),

:::::
and

:::
we

:::::
also

:::
see

::
a
::::::::::
reduction

:::
in

:::::::::
mapping

:::::
bias487

:::::
when

::::::
using

::::::
these

:::::::::::
thresholds

:::::::::
(Figures

::::::::::
S11-S14).

::::::::::::
Therefore,

::
a
::::::::
general

:::::::::::
suggestion

:::
for

::::::
users

:::
of

:::::
bwa488

:::
aln

::::::
should

:::
be

::
to

::::
use

:::
25

:::
as

::::
the

:::::::::
mapping

:::::::
quality

:::::::
cutoff.

:::::::::
However,

::::::
many

::::::
users

:::
are

::::::
using

::::::
other

:::::::::
mappers489

:::::::::::::::::::::::::::::::::::::::::::
(e.g. bowtie, Langmead and Salzberg, 2012)

:
in

::::::
their

::::::::
research,

:::::
and

::::::::
adjusted

::::::::::
genotype

::::::::::
likelihoods

::::::
allow490

::::::::::
correcting

:::
for

::::::::::
mapping

::::
bias

:::::::::::::
independent

:::
of

::::
the

::::::::::
mapping

:::::::::
software

::::
and

::::
its

::::::::
specifics

:::
in

::::::::::::
calculating491

::::::::
mapping

::::::::
quality

:::::::
values.

::::::
Our

:
results reiterate that mapping bias can skew results in studies using492

low-coverage data as is the case in most ancient DNA studies. Different strategies exist for mitigating493

these effects and we added a modified genotype likelihood approach to the population genomic toolkit.494

Nevertheless, none of these methods will be the ideal solution in all cases and they will not always495

fully remove the potential effect of mapping bias, making proper verification and critical presentation496

of all results crucial.497
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::::::
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::::::::::::
availability513

::::
Raw

:::::
data

::::
for

::::
the

:::::::::
boxplots

::::
can

:::
be

:::::::
found

::
in

::::::
Data

::::
S1.

::::::
Code

:::::
used

:::
in

::::
this

:::::::
study

::::
can

:::
be

::::::
found

:::::::
under514

https://github.com/tgue/refbias_GL
::::
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::
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:::::::::
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::::
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:::::::
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:::::
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:::
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::::
this

::::::::
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::
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::::::::
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::
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:
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:::::::::::
Empirical

:::::
data

:::::
from

::::
the

:::::
1000

:::::::::
genomes516
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::::::::::
available

:::::
from

:::::
their

:::::::::::
resources:

::::::
SNP

::::::
array

:::::
data

::
(http://ftp.1000genomes.ebi.ac.uk/517

vol1/ftp/release/20130502/supporting/hd_genotype_chip/ALL.chip.omni_broad_sanger_combined.518

20140818.snps.genotypes.vcf.gz
:
)
::::
and

::::
low

:::::::::
coverage

:::::::::::
sequencing

:::::
data

:
(https://ftp.1000genomes.519

ebi.ac.uk/vol1/ftp/phase3/data/
:
).

:
520

References521

D. H. Alexander and K. Lange. Enhancements to the ADMIXTURE algorithm for individ-522

ual ancestry estimation. BMC Bioinformatics, 12(1):246, June 2011. ISSN 1471-2105. doi:523

10.1186/1471-2105-12-246. URL https://doi.org/10.1186/1471-2105-12-246.524

D. H. Alexander, J. Novembre, and K. Lange. Fast model-based estimation of ancestry in unrelated525

individuals. Genome research, 19(9):1655–1664, 2009. ISSN 1088-9051. Number: 9 Publisher: Cold526

Spring Harbor Lab.527

A. Auton, G. R. Abecasis, D. M. Altshuler, R. M. Durbin, G. R. Abecasis, D. R. Bentley,528

A. Chakravarti, A. G. Clark, P. Donnelly, E. E. Eichler, P. Flicek, S. B. Gabriel, R. A. Gibbs,529

E. D. Green, M. E. Hurles, B. M. Knoppers, J. O. Korbel, E. S. Lander, C. Lee, H. Lehrach, E. R.530

Mardis, G. T. Marth, G. A. McVean, D. A. Nickerson, J. P. Schmidt, S. T. Sherry, J. Wang, R. K.531

Wilson, R. A. Gibbs, E. Boerwinkle, H. Doddapaneni, Y. Han, V. Korchina, C. Kovar, S. Lee,532

D. Muzny, J. G. Reid, Y. Zhu, Y. Chang, Q. Feng, X. Fang, X. Guo, M. Jian, H. Jiang, X. Jin,533

T. Lan, G. Li, J. Li, Y. Li, S. Liu, X. Liu, Y. Lu, X. Ma, M. Tang, B. Wang, G. Wang, H. Wu, R. Wu,534

X. Xu, Y. Yin, D. Zhang, W. Zhang, J. Zhao, M. Zhao, X. Zheng, E. S. Lander, D. M. Altshuler,535

S. B. Gabriel, N. Gupta, N. Gharani, L. H. Toji, N. P. Gerry, A. M. Resch, P. Flicek, J. Barker,536

L. Clarke, L. Gil, S. E. Hunt, G. Kelman, E. Kulesha, R. Leinonen, W. M. McLaren, R. Rad-537

hakrishnan, A. Roa, D. Smirnov, R. E. Smith, I. Streeter, A. Thormann, I. Toneva, B. Vaughan,538

X. Zheng-Bradley, D. R. Bentley, R. Grocock, S. Humphray, T. James, Z. Kingsbury, H. Lehrach,539

R. Sudbrak, M. W. Albrecht, V. S. Amstislavskiy, T. A. Borodina, M. Lienhard, F. Mertes, M. Sul-540

tan, B. Timmermann, M.-L. Yaspo, E. R. Mardis, R. K. Wilson, L. Fulton, R. Fulton, S. T. Sherry,541

V. Ananiev, Z. Belaia, D. Beloslyudtsev, N. Bouk, C. Chen, D. Church, R. Cohen, C. Cook, J. Gar-542

ner, T. Hefferon, M. Kimelman, C. Liu, J. Lopez, P. Meric, C. O’Sullivan, Y. Ostapchuk, L. Phan,543

S. Ponomarov, V. Schneider, E. Shekhtman, K. Sirotkin, D. Slotta, H. Zhang, G. A. McVean, R. M.544

Durbin, S. Balasubramaniam, J. Burton, P. Danecek, T. M. Keane, A. Kolb-Kokocinski, S. Mc-545

Carthy, J. Stalker, M. Quail, J. P. Schmidt, C. J. Davies, J. Gollub, T. Webster, B. Wong, Y. Zhan,546

A. Auton, C. L. Campbell, Y. Kong, A. Marcketta, R. A. Gibbs, F. Yu, L. Antunes, M. Bainbridge,547

D. Muzny, A. Sabo, Z. Huang, J. Wang, L. J. M. Coin, L. Fang, X. Guo, X. Jin, G. Li, Q. Li,548

Y. Li, Z. Li, H. Lin, B. Liu, R. Luo, H. Shao, Y. Xie, C. Ye, C. Yu, F. Zhang, H. Zheng, H. Zhu,549

C. Alkan, E. Dal, F. Kahveci, G. T. Marth, E. P. Garrison, D. Kural, W.-P. Lee, W. Fung Leong,550

15

https://github.com/tgue/refbias_GL
https://doi.org/10.5281/zenodo.14505750
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/ALL.chip.omni_broad_sanger_combined.20140818.snps.genotypes.vcf.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/ALL.chip.omni_broad_sanger_combined.20140818.snps.genotypes.vcf.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/ALL.chip.omni_broad_sanger_combined.20140818.snps.genotypes.vcf.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/ALL.chip.omni_broad_sanger_combined.20140818.snps.genotypes.vcf.gz
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/ALL.chip.omni_broad_sanger_combined.20140818.snps.genotypes.vcf.gz
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
https://doi.org/10.1186/1471-2105-12-246


M. Stromberg, A. N. Ward, J. Wu, M. Zhang, M. J. Daly, M. A. DePristo, R. E. Handsaker, D. M.551

Altshuler, E. Banks, G. Bhatia, G. del Angel, S. B. Gabriel, G. Genovese, N. Gupta, H. Li, S. Kashin,552

E. S. Lander, S. A. McCarroll, J. C. Nemesh, R. E. Poplin, S. C. Yoon, J. Lihm, V. Makarov, A. G.553

Clark, S. Gottipati, A. Keinan, J. L. Rodriguez-Flores, J. O. Korbel, T. Rausch, M. H. Fritz, A. M.554
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S. López, A. Kousathanas, V. Link, and others. Early farmers from across Europe directly descended656

from Neolithic Aegeans. Proceedings of the National Academy of Sciences, page 201523951, 2016.657

L. Huang, V. Popic, and S. Batzoglou. Short read alignment with populations of genomes. Bioin-658

formatics, 29(13):i361–i370, July 2013. ISSN 1367-4803. doi: 10.1093/bioinformatics/btt215. URL659

https://doi.org/10.1093/bioinformatics/btt215.660

M. J. Hubisz, D. Falush, M. Stephens, and J. K. Pritchard. Inferring weak population structure with661

the assistance of sample group information. Molecular ecology resources, 9(5):1322–1332, 2009. ISSN662

1755-098X. Number: 5.663

R. Hui, C. L. Scheib, E. D’Atanasio, S. A. Inskip, C. Cessford, S. A. Biagini, A. W. Wohns, M. Q.664
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Figure S1:
::::::
Binned

::::::::::
spectrum

:::
of

:::::::::::::
non-reference

:::::::
alleles

:::
in

::::
FIN

:::::
(A),

:::::
YRI

::::
(B)

::::
and

::::::
JPT

::::
(C)

:::
for

::::
the

:::::
four

::::::::
different

:::::::::::
estimation

:::::::::
methods.

:::::
Note

:::::
that

::::
the

:::::::
specific

::::::::::::::
ascertainment

:::
of

::::::::
common

::::::
SNPs

:::
in

:::
the

::::
joint

::::::::::::
genotyping

:::::
data

:::::::::::
contributes

:::
to

::::
the

::::::::::::
enrichment

::
of

:::::::::
variants

:::::
with

::::::
(true)

:::::::::::::
intermediate

:::::::::::
frequencies.
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Figure S2: Differences in allele frequency estimates in the parts of the reference genome attributed to
African ancestry. Boxplots for the differences between default genotype likelihood-based
estimates and corrected genotype likelihood-based estimates, default genotype likelihood-
based estimates and SNP array-based estimates, corrected genotype likelihood-based es-
timates, pseudohaploid (PH) genotype-based and SNP array-based estimates (A) in the
FIN population and (B) in the YRI population. (C) is showing boxplots of the per-site
population differentiation (measured as f2 statistic) for the four allele frequency estimates.
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Figure S3: Differences in allele frequency estimates in the parts of the reference genome attributed to
European ancestry. Boxplots for the differences between default genotype likelihood-based
estimates and corrected genotype likelihood-based estimates, default genotype likelihood-
based estimates and SNP array-based estimates, corrected genotype likelihood-based es-
timates, pseudohaploid (PH) genotype-based and SNP array-based estimates (A) in the
FIN population and (B) in the YRI population. (C) is showing boxplots of the per-site
population differentiation (measured as f2 statistic) for the four allele frequency estimates.
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Figure S4: Differences in allele frequency estimates in the parts of the reference genome attributed to
East Asian ancestry. Boxplots for the differences between default genotype likelihood-based
estimates and corrected genotype likelihood-based estimates, default genotype likelihood-
based estimates and SNP array-based estimates, corrected genotype likelihood-based es-
timates, pseudohaploid (PH) genotype-based and SNP array-based estimates (A) in the
FIN population and (B) in the YRI population. (C) is showing boxplots of the per-site
population differentiation (measured as f2 statistic) for the four allele frequency estimates.
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Figure S5: Simulation results for genotype call based methods using t123 = 20000 generations and a
sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture proportions.
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Figure S6: Simulation results for genotype call based methods using t123 = 20000 generations and a
sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture proportions.
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Figure S7: Simulation results for genotype likelihood based methods using t123 = 20000 generations
and a sequencing depth of 0.5X. Dashed blue lines represent the simulated admixture
proportions.
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Figure S8: Simulation results for genotype likelihood based methods using t123 = 20000 generations
and a sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture
proportions.
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Figure S9: Simulation results for genotype call based methods using t123 = 50000 generations and a
sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture proportions.
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Figure S10: Simulation results for genotype likelihood based methods using t123 = 50000 generations
and a sequencing depth of 2.0X. Dashed blue lines represent the simulated admixture
proportions.
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Figure S11:
::::::::::
Simulation

:::::::
results

::::
for

:::::::::
genotype

::::
call

:::::::
based

:::::::::
methods

::::::
using

::::::::::::
t123 = 20000

::::::::::::
generations

:::::
and

:
a
::::::::::::
sequencing

:::::::
depth

:::
of

::::::
0.5X.

:::::::::
Dashed

:::::
blue

::::::
lines

::::::::::
represent

::::
the

:::::::::::
simulated

:::::::::::
admixture

::::::::::::
proportions.

:::::
For

::::
this

:::::
run,

::::
the

:::::::::
mapping

::::::::
quality

::::::::::
threshold

::::
was

::::
set

:::
to

:::
25

::::::::
instead

:::
of

:::
30

::
as

:::
in

:::
all

:::::
other

::::::
runs.
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Figure S12:
::::::::::
Simulation

:::::::
results

:::
for

::::::::::
genotype

::::::::::
likelihood

::::::
based

:::::::::
methods

::::::
using

::::::::::::
t123 = 20000

::::::::::::
generations

::::
and

::
a

:::::::::::
sequencing

::::::
depth

:::
of

::::::
0.5X.

::::::::
Dashed

:::::
blue

:::::
lines

::::::::::
represent

::::
the

::::::::::
simulated

:::::::::::
admixture

::::::::::::
proportions.

::::
For

::::
this

:::::
run,

:::
the

:::::::::
mapping

::::::::
quality

:::::::::
threshold

::::
was

::::
set

::
to

:::
25

::::::::
instead

::
of

:::
30

:::
as

::
in

::
all

::::::
other

::::::
runs.
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Figure S13:
::::::::::
Simulation

:::::::
results

::::
for

:::::::::
genotype

::::
call

:::::::
based

:::::::::
methods

::::::
using

::::::::::::
t123 = 50000

::::::::::::
generations

:::::
and

:
a
::::::::::::
sequencing

:::::::
depth

:::
of

::::::
0.5X.

:::::::::
Dashed

:::::
blue

::::::
lines

::::::::::
represent

::::
the

:::::::::::
simulated

:::::::::::
admixture

::::::::::::
proportions.

:::::
For

::::
this

:::::
run,

::::
the

:::::::::
mapping

::::::::
quality

::::::::::
threshold

::::
was

::::
set

:::
to

:::
25

::::::::
instead

:::
of

:::
30

::
as

:::
in

:::
all

:::::
other

::::::
runs.
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Figure S14:
::::::::::
Simulation

:::::::
results

:::
for

::::::::::
genotype

::::::::::
likelihood

::::::
based

:::::::::
methods

::::::
using

::::::::::::
t123 = 50000

::::::::::::
generations

::::
and

::
a

:::::::::::
sequencing

::::::
depth

:::
of

::::::
0.5X.

::::::::
Dashed

:::::
blue

:::::
lines

::::::::::
represent

::::
the

::::::::::
simulated

:::::::::::
admixture

::::::::::::
proportions.

::::
For

::::
this

:::::
run,

:::
the

:::::::::
mapping

::::::::
quality

:::::::::
threshold

::::
was

::::
set

::
to

:::
25

::::::::
instead

::
of

:::
30

:::
as

::
in

::
all

::::::
other

::::::
runs.
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Supplementary Tables892

Table S1: 1000 genomes individuals used for the analysis of empirical data.
heightindividual

:::::::::
Individual

:
Population Autosomal sequencing depth

:::::::
Average

:::::::
original

:::::
read

::::::
length

: :::::::
Average

:::
rL:

HG00171 FIN 3.12803
:::
108

:::::
0.5031

::::::::
HG00177

: :::
FIN

: :::::::
3.43327

:::
108

:::::
0.5023

::::::::
HG00189

: :::
FIN

: :::::::
3.48314

:::
108

:::::
0.5026

HG00190 FIN 3.089
:::
108

:::::
0.5023

HG00272 FIN 3.61242
:::
108

:::::
0.5027

HG00277 FIN 3.86275
::
76

:::::
0.5052

HG00284 FIN 4.08807
::
76

:::::
0.5052

HG00323 FIN 2.80008
::::
89.19

:::::
0.5035

HG00330 FIN 13.9648
::::
90.22

:::::
0.5045

HG00380 FIN 3.45273
:::
100

:::::
0.502

HG00177
::::::::
NA18961

:
FIN

::::
JPT

:
3.43327

:::::::
3.48611

: ::
76

:::::
0.5067

HG00189
::::::::
NA18964

:
FIN

::::
JPT

:
3.48314

:::::
3.333

: ::
76

:::::
0.5052

NA18853
::::::::
NA18969

:
YRI

:::
JPT

:
2.56291

:::::
2.6653

: :::
100

:::::
0.5026

NA18923
::::::::
NA18970

:
YRI

:::
JPT

:
4.42742

:::::::
4.47082

: :::
100

:::::
0.502

NA19197
::::::::
NA19009

: ::::
JPT

:::::::
3.94626

:::
108

:::::
0.5033

::::::::
NA19076

: ::::
JPT

:::::::
3.50604

:::
108

:::::
0.5029

::::::::
NA19080

: ::::
JPT

:::::::
3.84401

:::
108

:::::
0.5055

::::::::
NA19081

: ::::
JPT

:::::::
2.60827

:::
108

:::::
0.5034

::::::::
NA19082

: ::::
JPT

:::::::
3.58866

:::
108

:::::
0.5018

::::::::
NA19084

: ::::
JPT

:::::::
4.37475

:::
108

:::::
0.5026

::::::::
NA18520

:
YRI 4.19443

:::::::
3.99207

: ::
76

:::::
0.5057

NA19200
::::::::
NA18522

:
YRI 4.22902

:::::::
2.55368

: ::
76

:::::
0.5066

NA19236
::::::::
NA18853

:
YRI 4.21535

:::::::
2.56291

: ::
76

:::::
0.5099

NA19248
::::::::
NA18923

:
YRI 4.24979

:::::::
4.42742

: :::
100

:::::
0.5019

NA19116 YRI 3.03829
::::
82.51

:::::
0.5056

NA19130 YRI 4.97799
::
76

:::::
0.5061

NA18520
::::::::
NA19197

:
YRI 3.99207

:::::::
4.19443

: :::
100

:::::
0.5021

NA18522
::::::::
NA19200

:
YRI 2.55368

:::::::
4.22902

: :::
100

:::::
0.502

::::::::
NA19236

: :::
YRI

: :::::::
4.21535

::
76

:::::
0.5055

::::::::
NA19248

: :::
YRI

: :::::::
4.24979

::
76

:::::
0.5058

Table S2: Total number and percentage
::::::::
Average

:::::
read

::::::::
balances

::::
for

:::
the

:::::
1000

:::::::::
genomes

::::::::::::
populations

:::::
used

:::
for

:::
the

:::::::::
analysis

:
of SNPs with extreme differences (≥ |0.5|) between ”True” and estimated

allele frequencies
:::::::::
empirical

:::::
data.

heightPopulation True vs default GLTrue vs. corrected GLTrue vs. Pseudohaploid
:::::::
Average

:::
rL:

FIN 738 (0.118%)608 (0.096%)
::::::
0.50334

:

::::
JPT

:
979 (0.157%)

:::::
0.5036

:

YRI 829 (0.133%)674 (0.108%)947 (0.152%)
::::::
0.50512

height
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