
Round #1

by Gavin Douglas, 12 Oct 2022 20:08
Manuscript: https://www.biorxiv.org/content/10.1101/2022.09.02.506364v1

Revisions required

To Dr. Abby and colleagues,

Two reviewers have examined your manuscript and they both agree it is interesting
and is of value for the field, which I also agree with. Their overlapping comments
pertain to clarifying certain points of confusion, through adding additional text and
figures where needed, and also clarifying how metagenome-assembled genomes
could be used as input.

I also have some comments in addition to what the reviewers brought up, mainly
related to adding additional clarification. Please see below.

I think after addressing all of our combined comments that your manuscript will be
clearer, particularly for users new to the MacSyFinder framework. Please let me
know if you need clarification on any requested changes.

All the best,

Gavin Douglas

Dear Dr. Douglas, thanks a lot for the positive assessment of our work, and for your
relevant comments and suggestions that helped us to improve our manuscript. In the
following, we made our best to reply to the comments and suggestions made by you
and the two reviewers. We hope you will now find our manuscript suitable for
recommendation at PCI Genomics.

Recommender’s comments

Major

I think reviewer #2 had great suggestions for future development. I think they are
beyond the scope of this specific manuscript though, with the exception of providing
some example input and output files. It would be helpful for users to have these
example files so they can try running the tool themselves and confirm they are
getting the right output. Ideally, this would be for all common types of input formats.

https://www.biorxiv.org/content/10.1101/2022.09.02.506364v1

One simple way of doing this would be to upload some example input/output files to
FigShare and then add some example usage commands using these files to the tool
README.

We have now added an example genome on Figshare and provide the expected output
files when running MacSyFinder with TXSScan using the two most common mode
“ordered_replicon” and “unordered”: https://doi.org/10.6084/m9.figshare.21581280.
Another, more comprehensive set of examples and genomes is available here:
https://doi.org/10.6084/m9.figshare.21716426.v1. In addition, references to these
datasets and examples were included in the README.md of the MacSyFinder Github
repository, and in the Documentation, following the Quick start section.

How long does the tool take to run on typical input files and how much memory does
it use? Can it be run on multiple cores, and if so, roughly what is the relative increase
in run-time (e.g., is it linear)?

We ran several new analyses and clarified these two points in a new paragraph and
accompanying figures in the main text (section II of Results). We provide run times and
memory usage for the analysis of several datasets with increasing number of genomes
(Figure 5C&D). We also discuss more thoroughly the behaviour (in terms of resources)
of the different parts of the MacSyFinder algorithm. MacSyFinder usually process a
genome within a few seconds. And yes, MacSyFinder can be ran on multiple cores,
the HMM similarity search can be parallelized (--worker option). The relative decrease
in run-time would be roughly linear for the HMM annotation part (and of course
depends first on the number of HMM profiles to run), as it can be fully parallelized. This
adds to a flat, irreducible time that corresponds to the search for the best solution. This
latter step depends heavily on the number of hits and clusters that are under
analysis. This is now documented in the new dedicated section in Results, where it is
also shown that run time heavily depends on the complexity of the macsy-models being
used. We also added the description of a workflow to run MacSyFinder in parallel on
many genomes.

I think the manuscript would be greatly improved if a brief discussion was added on
the following three general areas. I think a short section could be added to the
discussion/results to talk about these caveats (if they are indeed caveats).

First, how sensitive are the results are to different default values for the scores (e.g.,
as mentioned at L320). Does tweaking these parameters typically make much
difference? Also, how were the default scores chosen? It sounds like they were
selected to produce reasonable results on datasets where specific systems are known
to be present, but that’s not totally clear. As a potential user I would be worried that
these default values would create biases when applied to genomes with different
characteristics than in the training datasets. I’m guessing this kind of investigation was
important when developing the first version of the tool, or for one of the other related
manuscripts, but either way it would be good to quickly refer to any past validations for
readers unfamiliar with the earlier work.

https://doi.org/10.6084/m9.figshare.21581280
https://doi.org/10.6084/m9.figshare.21716426.v1

These scores were introduced in the new version, and the default values were chosen
so that higher scores would be obtained for non-redundant, more complete systems –
as explained in the main text. Also, the choice was made in order to give priority to
mandatory over accessory components, and to give priority to the main listed gene
over the ones listed as “exchangeables”. Here the relative order of the values of the
weights are more important than the absolute values. We attempted to clarify in the
text. We used TXSScan to show the differences between V1 and V2 (see also below)
and demonstrate the algorithm works much better with the new scoring system. In the
case of systems with many specific and conserved elements in single loci, the program
would probably be quite insensitive to small changes in the scoring/weighing
parameters. For other types of systems, these parameters may have to be explored
and tested to evaluate the biological relevance of the systems detected, as part of the
modelling process. All these values can indeed be parametrized by the modeler (and
shipped with the models via dedicated “model_conf.xml” files) if the behavior needs to
be changed. For instance in the case of CasFinder, since discrimination between types
or subtypes is mainly based on gene content, mandatory, accessory and
exchangeable components were assigned the same weight to enable an efficient
detection and typing of the Cas loci.

Second, and similarly, how confident can you be in any definitions of co-localization
for specific systems across different lineages? My concern is that these co-localization
relationships may be well-described in certain lineages, but that operon structure may
be less in others, and so these tools might not work as well. Do you think this is a
concern? And if so, what should users watch out for?

The recommender is right in the sense that biological expertise is a pre-requisite to
enable the modelling of the systems. It also depends on how confident the user is to
search for distant variants of existing systems. There is usually a strong bias in our
knowledge of the systems, and applying any annotation tool to very distant lineages
should always go together with a more careful exploration of the results. Because
developing the models is a work in itself, we have made several tutorial-like
publications describing the modelling process (cited in the main text), as well as
developed a thorough Modeller section in the Documentation of v2.

Last, how many systems are affected by the choice of whether components are
allowed to overlap across systems are not (e.g., L330 and the examples later)?
Knowing this would help give users an idea of whether it’s worth exploring the
multi_system/multi_model options. It’s also not totally clear to me how much one might
expect the overall results to change when using those options.

This is an integral part of the modelling process. The decision to use these options
must rely on biological knowledge. There is thus no general answer to that. In the case
of CasFinder, and as detailed in main text, section III, it was known that tandem
systems could share the adaptation module (composed of several genes). It was
therefore important to allow these components to be present (shared) in several
tandem systems in order to detect overlapping systems.

Minor

The tool’s link should be added https://github.com/gem-pasteur/macsyfinder to the
end of the abstract

Done

“Nanomachines” is not a commonly used term in this context (to my knowledge at
least), so I recommend that the authors define it or use a simpler term

Yes you’re right, furthermore, it was used only once in the manuscript. The term was
replaced with the more commonly used “machineries”.

In the intro it is implied that “components” is synonymous with “proteins”. If this is the
case, then I think the authors should explicitly explain why they opted for this term
over simply saying proteins. I’m thinking that perhaps the authors actually mean that
components can be non-protein coding genes and perhaps noncoding elements as
well, which would explain why this more general term is used. Either way, this should
be explained (but based on the CRISPR-Cas section I don’t think this is the case).

Yes, it is true that it is here unnecessary to introduce the term “components” in place
of genes and proteins, even though in the future we might consider adding noncoding
elements to the modeling design. We changed the term to “proteins” or “genes”
depending on the context.

L33 – rather than “performing function of interest” I would reword to be “performing
the same function as this system”

We changed the text.

L34 – rather than “coherent” I would say “distinct, non-co-localized” perhaps to be
clearer? (If that is what you mean there)

Using “conversely” was misleading here and probably a mistake. We changed the
sentences to clarify our meaning.

L67 – I think the limitations should be in a separate paragraph, as they are the key
motivation for making the new version, so you want to make readers don’t miss them.

Yes, thanks for this suggestion, we have now the limitations in a separate paragraph.

L70 – Unclear what “component-specific filtering criteria” refer to here, without
looking at methods. It would be nice to see a quick example.

We attempted to clarify the sentence, it now reads “protein-specific criteria to filter the
HMMER hits when annotating the genes for the systems detection”, however adding
an example at this stage of the manuscript (end of introduction) seemed a bit early.

L77 – Instead of “novel” I think you mean “new”

Done

L82 – should be “takes” rather than “gets”

Done

L83 – “fasta” should be “FASTA”, upon all usages

Done

L102 – change “have” to “had”

Done

L120, L476 – change “…” to “, etc.”

Done

L158: A quick description of what GA scores are based on (or an example) would be
useful

Yes, thanks for the suggestion, it was missing. A brief description of GA scores is
now included.

E-values are well known, but I haven’t seen the term “i-evalue” before. Maybe I
missed where it was defined, but if not this should be defined and distinguished from
normal E-values.

The “i-evalue” (independent e-value) is an internal statistical value computed by
HMMER. We now add its meaning upon first appearance of the term.

L328 – should be “are” rather than “were” for both instances (i.e., use present tense
when describing what the tool does in general, and not just what it did on a single
occasion)

Yes thanks a lot for pointing this out, we corrected these mistakes.

L335-336: It’s not clear to me what the edges are based on in this case (i.e., do they

represent the binary relationship of whether the systems can be compatible or not?
Or can they be weighted?). I think it would be useful to add a sentence clarifying that
for potential users who aren’t familiar with the clique search approach.

The sentence was modified to clarify it. It now reads: “The program builds a graph
where each node represents a system with its associated score (as a weight), and
where only compatible systems are connected with an edge.”

L393 – Capitalize “archaea” and “bacteria” (here and elsewhere) to be consistent
with earlier usage

Done

L468 – rather than “we present its application” I would say “we apply it”

Done

L499 – Make “Multi_model” lowercase (since I’m guessing the module is case
sensitive?)

Yes, thanks! Done

L524: “that the same cluster is” should be “for the same cluster to be”

Indeed, thanks! Done

Reviews

Reviewed by Max Emil Schön, 26 Sep 2022 09:34

First of all congrats to the authors for a very nice tool and an interesting
corresponding paper! I do not have many comments, as I think the usefulness and
impact of the tool is apparent and the paper presents its main points clearly and
concisely. Importantly, all described updates and improvements are well justified and
will likely help in spreading the application of MacSyFinder and improve its
predictions. The addition of a dedicated structure and automatic handling of models
is also very handy and should significantly lower the threshold for new users, as will
the intuitive installation process via pip, conda or docker. The available online
documentation is very extensive, detailed and well structured. The application of GA
scores (which I did not know about before) is very elegant and should reduce false
positives. The ability to re-analyze runs using macsyprofile could be very useful for
in-depth searches for e.g. novel variations of molecular systems.

Below are my comments on the paper, please consider them suggestions. I would be
very interested to see your comments on these issues, but I think the paper could be
considered complete even without theses additions.

First of all, we thank the reviewer for the very positive assessment of our work and the
relevant suggestions. We made our best to address the different suggestions and
comments.

 general comments

While the authors describe the improvements that were made between v1 and v2, I
think it would be great to see some visualizations/data substantiating this. I could
imagine e.g. an additional figure showing the discovery of a system that was not
detected in v1 but now is found by v2. Information on the number of false
positive/false negative detections, on the gene or system level, for both versions on
one or several example genomes could be interesting as well. Showing this in a
figure would help the reader appreciate at a glance why the development of such a
major update was indeed necessary.

Figures 6 and 7 (formerly 4 and 5) and the sections III and IV illustrate some cases
where version 1 would have produced less biologically relevant results. In addition to
that, we have now included a new paragraph in Results based on new analyses that
give comparative statistics between v1 and v2 results, based on the run of the models
for TXSScan on the same set of genomes. The results are displayed on the new Figure
4.

Have you assessed the impact of fragmented assemblies (e.g. incomplete MAGs) on
the performance of MacSyFinder v2? I think it could be worthwhile to many readers
how this affects the prediction, since many people will likely apply it on genomes that
are, to a certain degree, incomplete or fragmented. I am for example thinking of
systems that are separated by contig boundaries and therefore potentially not in the
correct order as they are on the genome.

We have now included a few sentences in the main text in the Materials & Methods
(section “Input & Output files”) on the use of MacSyFinder on fragmented assemblies
or incomplete genomes. We also created a “How to” section in the User guide from
MacSyFinder’s documentation:

“Of note, recommendations on how to use MacSyFinder on incomplete or fragmented
genomes are included in the “How To” section of the User guide. In a nutshell and
depending on the level of assembly and completeness of the genome, we recommend
to run MacSyFinder with the “ordered_replicon” mode, which can be complemented by
the results of an “unordered” run. Results using the “ordered replicon” option on draft
genomes have to be considered with care.”

Here is the link to the “How to” section in the Documentation:
https://macsyfinder.readthedocs.io/en/latest/user_guide/FAQ.html#how-to-deal-with-
fragmented-genomes-mags-sags-draft-genomes

https://macsyfinder.readthedocs.io/en/latest/user_guide/FAQ.html#how-to-deal-with-fragmented-genomes-mags-sags-draft-genomes
https://macsyfinder.readthedocs.io/en/latest/user_guide/FAQ.html#how-to-deal-with-fragmented-genomes-mags-sags-draft-genomes

We are also investigating the possibility to create a dedicated search mode for a future
version of MacSyFinder.

specific comments

abstract: I think it’s worth mentioning here that the target organisms are only bacteria
and archaea, but not eukaryotic microbes.

We left is as is, as one could also consider using MacSyFinder to detect viruses or
prokaryotic elements embedded in eukaryotic genomes. Moreover, some fungi have
biosynthetic gene clusters that could also be explored using MacSyFinder (see for
example a review by Gills & Gloer here: https://doi.org/10.1128/microbiolspec.FUNK-
0009-2016).

L 15-16: I find this sentence a bit hard to parse, consider clarifying it.

Done, we shortened it. It now reads:

“Finally, we have updated and improved MacSyFinder popular models: TXSScan to
identify protein secretion systems, TFFscan to identify type IV filaments, CONJscan to
identify conjugative systems, and CasFinder to identify CRISPR associated proteins.”

L 109: Is there some sort of XML schema for validating the model definition in the
new macsy-model packages? This could be useful for future modellers.

The “macsydata check” subcommand is actually dedicated to that (see Table 2). On
top of this, we have now implemented and added to MacSyFinder v2 the “macsydata
init” subcommand that will create a template macsy-model package for the modellers,
as suggested by the second reviewer.

L 172-177: A somehwat difficult/unclear paragraph that could perhaps be clarified.

We attempted to clarify by explaining what are the GA scores and by rewriting the
paragraph:

“Many of the HMM protein profiles used in MacSyFinder models already include GA
thresholds because they were retrieved from PFAM or TIGRFam, which systematically
use them (Sonnhammer et al., 1997; Haft et al., 2003). Yet, some other profiles lacked
GA thresholds. To remediate this limitation, we modified these profiles to include the
threshold GA scores. We did this for CasFinder, TXSScan, CONJScan, and TFFscan
profiles (see Table 1).”

L 219: There’s something wrong with this sentence I think.

Upon this reviewer and reviewer #2 request, we changed it to “The code was ported
to Python 3”.

https://doi.org/10.1128/microbiolspec.FUNK-0009-2016
https://doi.org/10.1128/microbiolspec.FUNK-0009-2016

Table 1: Consider changing ‘Nb’ to ‘No.’

Done

L 385-389: This sentence could be rephrased for more clarity.

This was done, it now reads:

“To illustrate the interest of the novel file architecture, we created a new version of
“TXSScan” (v1.1.0) that gathers the models for the type IV filament super-family (“TFF-
SF”) and for the protein secretion systems (former “TXSScan”, v1.0.0) (Abby et al.,
2016; Denise et al., 2019). These models were also ported to the grammar of
MacSyFinder v2.”

Macsy-models github organization: link to https://github.com/macsy-
models/.github/blob/CONTRIBUTING.md is broken

Thanks a lot for pointing this out, the link has now been fixed to point to the following:
https://github.com/macsy-models/.github/blob/main/CONTRIBUTING.md

Reviewed by Kwee Boon Brandon Seah, 12 Oct 2022 11:14

This manuscript (https://doi.org/10.1101/2022.09.02.506364) describes a new
version (v2) of the tool MacSyFinder, which searches for gene clusters in microbial
genomes (e.g. coding for macromolecular complexes) by first using HMMs to identify
individual protein components, and then user-defined models of essential and
accessory components to annotate the clusters. In this version, the code was
updated to Python 3, the modeling and search engine were improved, and new tools
were added to make it easier to distribute and install models.

The previous version of MacSyFinder (https://doi.org/10.1371/journal.pone.0110726)
and tools in which it has been integrated, such as CrisprCasFinder, appear to be
popular and widely adopted. The updates should improve the user-friendliness of the
software.

Specifically, the software is straightforward to install via different distribution channels
(Conda, pip, Docker container). The macsydata tool and the use of Git repositories to
distribute models is convenient for both users and modellers, and is a good idea for
getting more community participation and to make the tool more extensible.
Extensive documentation for users, modellers, and developers is available online.
Several of the most often used models such as those for CRISPR-Cas systems have
been ported to MacSyFinder v2.

We thank the reviewer for the positive assessment of our work and manuscript, and
for the relevant comments. We made our best to address the different suggestions
and comments.

Major comments

https://doi.org/10.1371/journal.pone.0110726

Comparison to other tools

Could the authors briefly discuss the intended use cases for MacSyFinder and how
they differ from other tools for pathway and gene cluster annotation, such as KEGG
Mapper, Pathway Tools, and Antismash (secondary metabolite gene clusters)? For
example, the logical expressions used to define KEGG Modules has similarities to
the model definitions in MacSyFinder, but don't incorporate information about
collocation, as far as I know. This could help give some context for readers and
users.

It is true that some context was missing. We now added a paragraph in the introduction
section to give some context regarding other annotation tools. The main difference
between the mentioned tools and MacSyFinder, is that MacSyFinder is a generic
framework allowing to model annotation rules for any macromolecular system of
interest. Moreover, the program relies both on gene content AND co-localization rules
to predict the presence of a given macromolecular system, and provides a yes/no to
the question of the presence of the system. Co-localization rules are used in
AntiSmash but not in KEGG Mapper. The content and co-localization rules of
AntiSmash are probably well-suited for the detection of biosynthetic gene clusters, but
they do not offer the range of possibilities that MacSyFinder grammar offers (specify
gene specific features, have sets of genes listed that fulfil a same function, the
possibility to have loner and forbidden genes, multi-loci or single locus systems…).
Examples of intended use cases are given all along the Results section with the
depiction of MacSyFinder most popular models.

Input data formats

It appears to be only possible to analyse either complete closed genomes where the
gene order is known (in ordered replicon mode), or treat each gene independently
(unordered mode), which in the v1 paper was suggested for the analysis of
metagenomes. However it is now quite common to work with draft genomes and
metagenome assembled genomes (MAGs) where the gene order is only partly
known. Is it possible to exploit this partial information? In the user guide, a third input
option, "gembase" is offered as a solution for analyzing multiple genomes at once,
but this is not mentioned in the paper. Would it be appropriate to use this input mode
for draft genomes?

Given this comment and that of reviewer #1, we clarified in the text the different input
types and what they entail. This is now done in the dedicated, 1st section of the
Materials & Methods. The “unordered” replicon mode does indeed ignore the gene
order, but is not limited to an individual gene treatment, since the number of each
different genes found is computed, and the quorum of genes applies, providing an idea
of the “completeness” of the potential macromolecular system found in the genome.
We also added a paragraph on the use of MacSyFinder on draft genomes and
metagenome assembled genomes (see reply to reviewer #1).

As for the “gembase” format, it consists in the analysis of multiple genomes at once
(one FASTA file with all sets of proteins combined), and it is now advised to use the
Nextflow workflow provided to run such a task. It is thus not well-suited to analyse

contigs of MAGs. We hope this is now clearer with the updated paragraph on input
types.

Improvements to search engine

My expertise is not in algorithm design so I can't comment too much on the method
itself, but could the authors give an example of a suboptimal solution found by v1
compared to the improved results from v2 (see lines 431-465)? It would be helpful to
have a concrete example of what these look like in v1 so that we can see how v2
produces better results.

We have now added a new paragraph and figures (Fig. 4) dedicated to a systematic
comparison between the v1 and v2 versions when using TXSScan on the same set of
genomes. We also exemplify how the behaviours of the two versions differ in the
Results section III and IV and on Figure 6 (formerly 4).

I also found it difficult to understand the description of the heuristic used by v2 to
simplify out-of-cluster components (lines 454-456); perhaps a diagram might be
helpful here. The results shown in Figure 4 appear to be the output from v2 only.

We attempted to clarify the text, and introduced a new supplementary figure explaining
the rationale behind the proposed heuristics (Figure S2) that is referred to in the main
text.

Predicting complete vs. incomplete systems

An incomplete system could be missing one or more of its components, whether
mandatory or accessory. In the example shown in Figure 5C (dCONJ typeF), one of
the three original mandatory genes (traI) is still mandatory even though the model is
incomplete. However, isn't it possible to have an incomplete copy of the T4SS where
only traI is missing? Could one define a model for incomplete systems simply by
changing all genes that are mandatory to "accessory"?

It is possible to have an incomplete copy of T4SS where only traI (the relaxase) is
missing. However, we wanted to distinguish conjugative T4SS from other non-
conjugative T4SS. The latter are generally devoid of relaxase in their complete forms.
This is why we have set the relaxase as mandatory. In the current version of
MacSyfinder, at least one gene per model needs to be mandatory. However, the
minimum number of mandatory genes needed to reach the quorum can be set to 0
using min_mandatory=0. In that case, the proposition of the reviewer would work.

Suggestions for future development

Finally I have a few suggestions for future versions of the software that the authors
could consider.

• Bundle some example data for users to test the software after installation, and
also to help them learn how to use the various options.

Yes, thanks a lot for this suggestion, we have now included links to example files in
the README file of MacSyFinder repo, in main text (Input/output section of Materials
& Methods) and in the Documentation (see also our reply to the recommender). They
are available here: https://doi.org/10.6084/m9.figshare.21581280 and here
https://doi.org/10.6084/m9.figshare.21716426.v1. They come in addition to all the
functional tests that are automatically ran upon installation to check the success of the
procedure.

• In addition to the model validator macsydata check , how about something like
macsydata init to set up the directory structure and template files to get started
with a model?

We thank the reviewer for the very relevant suggestion, we could implement this new
feature to ease the design of new macsy-models. This feature is now available in the
new MacSyFinder release 2.1 as the “macsydata init” subcommand.

• Allow annotated nucleotide sequences as input too, e.g. feature tables +
nucleotide Fasta + genetic code, or EMBL/Genbank files. This would simplify
the specification of feature coordinates, e.g. when we are working with draft
genomes where a complete replicon is not available, only individual contigs.

We thank the reviewer for this suggestion. While we acknowledge that this is a very
interesting feature, it is for now beyond the scope of this paper, but it is definitely on
our TO DO list for the release of a future version of MacSyFinder.

Minor comments

• Figure 1. Panels 3.1 and 3.2 "exam" should probably be "examination" or
"examine"

Yes, thank you, it is done.

• Line 219. I think the authors mean "ported to Python 3" instead of "carried
under Python 3".

Thanks a lot, it is much better indeed! Done

• Line 295. Suggest to change "xm" and "xa" to use subscripts for m and a, to
avoid giving the impression that these are products x times m or x times a.

Thanks for the suggestion, this was done.

• Lines 338-339. Could the authors clarify what "this" in "this is the definition of a
clique" refers to? Is it referring to the set of connected systems or the
connections between them (or are these equivalent?).

Yes we agree this was unclear. It now reads: “A sub-graph where all nodes are
inter-connected is the definition of a “clique”.

• Line 446. Which panel in Figure 4 is being referred to?

https://doi.org/10.6084/m9.figshare.21581280
https://doi.org/10.6084/m9.figshare.21716426.v1

We now specify it is Fig. 4D (now 6D).

• Line 583. The word "degenerate" here appears to be used here in the sense
of "decayed", "degraded", or "incomplete". However it can easily be confused
with the technical meaning of "having multiple elements that correspond to a
single element", especially in the context of defining a model. I suggest
sticking to "complete" vs. "incomplete" or similar terminology used elsewhere
in the manuscript.

We have now replaced the words “degenerated” and “degenerate” by “decayed”.

• The software is archived at the Software Heritage Archive, but this isn't
mentioned in the manuscript. I suggest also citing the archive DOI.

We have added the permalink to the Software Heritage snapshot of the MSF v2.0
release:
https://archive.softwareheritage.org/swh:1:dir:4a5136d45e82edfd4d06ce93cd389
2195230e1d8;origin=https://github.com/gem-
pasteur/macsyfinder;visit=swh:1:snp:344cf013fc7a3d44b87a722da3fe87d33f8c07
bc;anchor=swh:1:rev:86781d479c3361cb0728161bc8ab23e4adca6c28. And
release 2.1 resulting from this round of revision is available on Github and on
Figshare. We will provide the permalink on Software Heritage to the version 2.1
when available.

https://archive.softwareheritage.org/swh:1:dir:4a5136d45e82edfd4d06ce93cd3892195230e1d8;origin=https:/github.com/gem-pasteur/macsyfinder;visit=swh:1:snp:344cf013fc7a3d44b87a722da3fe87d33f8c07bc;anchor=swh:1:rev:86781d479c3361cb0728161bc8ab23e4adca6c28
https://archive.softwareheritage.org/swh:1:dir:4a5136d45e82edfd4d06ce93cd3892195230e1d8;origin=https:/github.com/gem-pasteur/macsyfinder;visit=swh:1:snp:344cf013fc7a3d44b87a722da3fe87d33f8c07bc;anchor=swh:1:rev:86781d479c3361cb0728161bc8ab23e4adca6c28
https://archive.softwareheritage.org/swh:1:dir:4a5136d45e82edfd4d06ce93cd3892195230e1d8;origin=https:/github.com/gem-pasteur/macsyfinder;visit=swh:1:snp:344cf013fc7a3d44b87a722da3fe87d33f8c07bc;anchor=swh:1:rev:86781d479c3361cb0728161bc8ab23e4adca6c28
https://archive.softwareheritage.org/swh:1:dir:4a5136d45e82edfd4d06ce93cd3892195230e1d8;origin=https:/github.com/gem-pasteur/macsyfinder;visit=swh:1:snp:344cf013fc7a3d44b87a722da3fe87d33f8c07bc;anchor=swh:1:rev:86781d479c3361cb0728161bc8ab23e4adca6c28

	Round #1
	Revisions required
	Reviews

	Major comments
	Comparison to other tools
	Input data formats
	Improvements to search engine
	Predicting complete vs. incomplete systems
	Suggestions for future development

	Minor comments

