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Abstract

The use of RNA-Seq data and the generation of de novo transcriptome assemblies have been piv-
otal for studies in ecology and evolution. This is distinctly true for non-model organisms, where
no genome information is available; yet, studies of differential gene expression, DNA enrichment
baits design, and phylogenetics can all be accomplished with the data gathered at the transcrip-
tomic level. Multiple tools are available for transcriptome assembly, however, no single tool can
provide the best assembly for all datasets. Therefore, a multi assembler approach, followed by a
reduction step, is often sought to generate an improved representation of the assembly. To reduce
errors in these complex analyses while at the same time attaining reproducibility and scalabil-
ity, automated workflows have been essential in the analysis of RNA-Seq data. However, most
of these tools are designed for species where genome data is used as reference for the assembly
process, limiting their use in non-model organisms. We present TransPi, a comprehensive pipeline
for de novo transcriptome assembly, with minimum user input but without losing the ability of a
thorough analysis. A combination of different model organisms, kmer sets, read lengths, and read
quantities were used for assessing the tool. Furthermore, a total of 49 non-model organisms, span-
ning different phyla, were also analyzed. Compared to approaches using single assemblers only,
TransPi produces higher BUSCO completeness percentages, and a concurrent significant reduction
in duplication rates. TransPi is easy to configure and can be deployed seamlessly using Conda,
Docker and Singularity.
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1. Introduction

In the last decades, technology improvements have rendered next generation sequencing (NGS)

a robust and cost effective technique of wide applicability in research fields that require large-

scale DNA sequencing. Among the different NGS-based approaches, RNA sequencing (RNA-

Seq) allows the generation of the so-called transcriptomes de novo (i.e., without the need for a

reference genome). Transcriptomes are applicable for several downstream applications, including

the analysis of differential gene expression (Pita et al., 2018), gene model prediction (Chan et

al., 2017), DNA enrichment baits design (Quek et al., 2020), genome annotation (Testa et al.,

2015; Holt and Yandell, 2011), detection of whole-genome duplication (Yang et al., 2019), and

phylogenetics (Cheon et al., 2020; Lozano-Fernandez et al., 2019).

Various software have been developed for the generation of de novo transcriptome assembly. Com-

monly used tools include Trinity (Grabherr et al., 2011), rnaSPADES (Bushmanova et al., 2019),

Trans-ABySS (Robertson et al., 2010), and SOAPdenovo-Trans (Xie et al., 2014). However, a

recent study compared ten assemblers with nine datasets (i.e. different species and samples) and

demonstrated that the performance of each tool varies by dataset; no single tool was able to

generate optimal assemblies for all datasets (Hölzer & Marz 2019). The assemblers performance

measurement was based on a combination of biological based measures (e.g. number of Benchmark-

ing Universal Single-Copy Orthologs - BUSCO) , and reference-free measures (e.g. TransRate’s

optimal assembly score; Smith-Unna et al., 2016). Therefore, combining multiple assemblers likely

represents a valuable approach to increase the quality of reference assemblies (Lu et al., 2013).

Moreover, factors such as reads length and number have to be taken into account for the assembly

of a reference transcriptome (Grabherr et al., 2011; Schulz et al., 2012; Francis et al., 2013).

Transcriptome de novo assemblies tend to produce thousands to hundreds of thousands of different

transcripts of which a significant amount can be misassembled (Bushmanova et al., 2019; Schulz

et al., 2012). To reduce the complexity within a transcriptome and to identify true transcripts and

isoforms, one common approach is to remove duplicated and misassembled sequences. Clustering

methods are often employed for this, where similar transcripts are combined into groups. One of

the tools commonly used for clustering transcripts is CD-HIT-EST (Fu et al., 2012), which tends

to keep the longest transcripts only. However, clustering and selecting for the longest transcripts

is not always the best strategy (Gilbert, 2013) since they often result from misassemblies (i.e.

not real transcripts) and may include frameshift errors. On the other hand, tools such as Evi-

dentialGene (Gilbert, 2013, 2019) use a combination of clustering and classification methods (i.e,

sequence features like coding sequence (CDS) content and length) to generate a non-redundant
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consensus assembly. The latter approach is more accurate for the cost of longer computing time and

higher computation demands (e.g. higher memory usage). Combining multiple assemblers with a

thorough reduction of each assembly individually thus increases the complexity of the analyses.

The ideal path to optimal reference transcriptomes should , therefore, include the use of multiple

assemblers, followed by thorough filtering of each assembly individually. Generating, combining

and filtering all resulting assemblies step by step individually (cf. MacManes, 2018; Cerveau, &

Jackson, 2016) is impractical, of limited reproducibility, and can be prone to human error. Con-

sequently, the design of streamlined RNA-Seq analysis pipelines have gained popularity over the

recent years. However, most of these pipelines require a reference genome for the transcriptome as-

sembly (i.e., reference-guided assembly) and are, consequently, not suitable for de novo approaches

(Cornwell et al., 2018; D’Antonio et al., 2015; Wang, D. 2018; Zhang, X., & Jonassen, I. 2020;

Kohen et al., 2019; Martin et al., 2010). This represents a major limitation for transcriptomics in

non-model organisms, where genome reference data is usually lacking.

To address these shortcomings, we developed TransPi, a comprehensive TRanscriptome ANalysiS

Pipeline for de novo transcriptome assembly. TransPi is implemented using the scientific workflow

manager Nextflow (Di Tommaso et al., 2017), which provides a user-friendly environment, easy

deployment, scalability and reproducibility. TransPi performs all steps of standard RNA-Seq

analysis workflows, from raw reads quality control up to annotation against multiple databases

(e.g. SwissProt, PFAM). To reduce possible biases, duplication and misassemblies, TransPi utilizes

various assemblers and kmers (i.e. k length sequences used for the assembly) to generate an over

assembled transcriptome that is then reduced to a non-redundant consensus transcriptome with the

software EvidentialGene (Gilbert, 2013, 2019). Here we show that, when compared to approaches

using single assemblers only, TransPi produces higher BUSCO completeness percentages, and a

concurrent significant reduction in duplication rates (i.e. higher single-copy genes). Higher BUSCO

scores in the complete and single-copy categories indicates a less erroneous consensus assembly

(Waterhouse et al., 2011; Simão, et al., 2015).

In sum, TransPi provides a useful resource for the generation of de novo transcriptome assemblies,

with minimum user input but without losing the ability of a thorough analysis. TransPi and all

documentation is available at https://github.com/palmuc/TransPi.git.
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2. Methods

2.1 Pipeline implementation and configuration

TransPi is based on the scientific workflow manager Nextflow (Di Tommaso et al., 2017). The

pipeline is easy to configure and can be deployed using the package management system Conda,

Docker, Singularity or cloud environments (e.g., AWS). Real-time monitoring of the pipeline can

be performed by using Nextflow Tower with no modification needed to the TransPi script (Sup-

plementary File 9). Deployment of TransPi in computing clusters is accomplished by the native

communication of Nextflow with scheduling managers such as SLURM, PBS and Torque. TransPi

can deploy hundreds of jobs depending on user configurations and needs. Multiple datasets can be

run in parallel given that enough computing resources are available. Running time of the pipeline

is dependent on factors such as number of datasets, reads quantity, kmer selection, complexity of

the transcriptome being assembled, and user-specified additional options selected (e.g. filtration,

signalP, etc.). TransPi consists of two major components: a precheck script to install dependencies,

and the main script to run the assemblers, perform the reduction and transcriptome annotation.

2.2 Precheck script

TransPi integrates several programs and external databases (e.g. SwissProt, Boeckmann et al.,

2003; PFAM, El-Gebali et al., 2019) for the generation and annotation of the reference transcrip-

tome. To facilitate the setup of all necessary dependencies, TransPi includes an installation script.

This will first install, if necessary, the Conda package management system, all dependencies, and

download and configure the required databases. The script is designed to recognize when a pre-

vious run of the script was performed, thus preventing the repetition of previous steps. Another

advantage of the precheck script is that it will automatically create the configuration file needed

by Nextflow to execute the pipeline with all the necessary information. As a result, the user will

only have to make some minor changes to the file (e.g. number of allocated threads, the amount

of working memory, scheduling manager, node names and queue) before running the pipeline.

Essentially, the precheck has to be run entirely only one time for the dependencies and database
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installation. Subsequent pipeline runs can be done with the same configuration file. Auxiliary

scripts for the automated update of the databases such as Pfam and SwissProt are also provided.

2.3 Main script

A diagram of the TransPi v1.0.0 is shown in Figure 1. First, reads are checked for adapter pres-

ence and/or low quality bases with FastQC v0.11.9 (Andrews, 2010). Filtration of the reads (by

default reads with an average phred quality >25 are kept) and trimming of adapters (if present) is

performed with fastp v0.20.1 (Chen et al., 2018). Optionally, removal of ribosomal RNA (rRNA)

is performed with SortMeRNA v4.2.0 (Kopylova et al., 2012). Filtered reads are subsequently

normalized before being assembled (Grabherr et al., 2011). The assembly step combines five dif-

ferent assemblers and uses multiple kmer lengths. The assemblers used by TransPi are rnaSPADES

v3.14.0 (Bushmanova et al., 2019), Trans-ABySS v2.0.1 (Robertson et al., 2010), SOAPdenovo-

Trans v1.03 (Xie et al., 2014), Trinity v2.9.1 (Grabherr et al., 2011) and Velvet v1.2.12/Oases

v0.2.09 (Zerbino & Birney, 2008; Schulz et al., 2012). After the assembly stage, the combined

transcriptomes are reduced with EvidentialGene v2019.05.14 (Gilbert, 2013, 2019). Briefly, Evi-

dentialGene will merge perfect duplicates, cluster protein sequences, and perform local similarities

searches between the transcripts using BLAST v2.2.31 (Altschul et al., 1997) (for more details see

Gilbert, 2019).

Next, TransPi uses this non-redundant reference transcriptome to run several downstream analyses

commonly applied to de novo transcriptomes projects: 1) rnaQUAST v2.0.1 for quality assessment

(Bushmanova et al., 2016), 2) Bowtie2 v2.3.5.1 to map the reads against the transcriptome (Lang-

mead & Salzberg, 2012), 3) BUSCO (Simao et al., 2015; v3 and v4) to quantitatively assess the

completeness in terms of expected universal single copy gene content, 4) TransDecoder v5.5.0

(https://transdecoder.github.io) to identify open reading frames (ORFs), with the option to per-

form homology searches of all ORFs to known proteins via BLAST, in order to retain ORFs that

may have functional significance but don’t pass the coding likelihood scores, and 5) Trinotate

v3.2.0 (Bryant et al., 2017) to provide automatic functional annotation.
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Figure 1: TransPi v1.0.0 flowchart showing the various steps and analyses it can performed. For simplicity, this diagram does not
show all the connections between the processes. Also, it omits other additional options like the BUSCO distribution and transcriptome
filtering with psytrans (see Section 2.6). ORFs=Open reading Frames; HTML=Hypertext Markup Language
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By using Diamond v0.9.30 (Buchfink et al., 2015), the similarity searches of the transcripts used

for the annotation step against the SwissProt and UniProt databases (chosen by the user) are ac-

celerated. RNAmmer v1.2 (Lagesen et al., 2007), TMhmm v2.0 (Krogh et al., 2001), SignalP 4.1

(Petersen et al., 2011) are used to search for ribosomal RNA, signal peptide proteins, and trans-

membrane domain prediction, respectively. Protein domain searches are performed with HMMER

v3.3 (Finn et al., 2011) against the last version of the PFAM database. All this information is

combined into an annotation report which includes: 1) information on Gene Ontology (GO); 2)

evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG), and; 3) Kyoto

Encyclopedia of Genes and Genomes (KEGG). It also contains the similarity search against Swis-

sProt and the user-specified UniProt database. TransPi will also produce a custom Hypertext

Markup Language (HTML) report that summarizes the steps and provides interactive plots for

straightforward exploration of the data. Plots from the interactive report can also be saved in SVG

format. Other plots are also saved automatically (PDF and SVG) in the results directory gener-

ated by the pipeline. Altogether, TransPi provides the user with the ability to assess and evaluate

the final assembly and to compare it to other commonly used methods for reference transcriptome

generation (e.g., a Trinity only assembly).

2.4 Kmer selection and Reads length effect

To test the performance of the pipeline and the effect of kmer selection (Prjibelski et al., 2020), read

quantities, and read lengths, datasets from the model organism Caenorhabditis elegans, Drosophila

melanogaster, and Mus musculus were used. These species were selected given the vast amount

of transcriptomic data available with various read length and quantities (Supplementary Table

1). Three kmer sets (A, B, C) depending on read length were designed, since the selection of

this parameter will modify how the assembly graph is constructed. For the read length test ,data

consisting of paired-end reads of 50 base-pairs (bp), 75 bp, 100 bp, 150 bp (Supplementary Table

1) were analysed. All statistical analyses, such as ANOVA and Kruskal-Wallis test, were performed

in R (v3.6.2).
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2.5 TransPi on non-model organisms

Given TransPi is focused on species with no (or scarce) genome information, the pipeline was tested

with multiple species from different phyla (Table 1). Kmer set C was applied for all assemblies

of non-model organisms as this gave the best BUSCO percentages (see Results). The non-model

organisms datasets consisted of various read lengths ranging from 50 bp to 150 bp. All results

and plots are also available as interactive documents (Supplementary File 5). Given Trinity is by

far the most commonly used de novo transcriptome assembly tool (by number of citations and

excluding usage of some tools for genome assemblies), the performance of TransPi was evaluated

by comparing the output transcriptome to the Trinity assemblies for each dataset.

2.6 Additional options

Various additional options were implemented in TransPi to obtain more insight into the tran-

scriptomes being assembled. One of these options is filtering symbionts and/or contaminants

from the assembly using the Parasite & Symbiont Transcriptome Separation software (psytrans)

(https://github.com/sylvainforet/psytrans). The filtration step was tested with the dataset of the

coral Porites pukoensis (accession SRR8491966) using sequences of it symbiont Symbiodinium mi-

croadriaticum (Uniprot Taxon Identifier: 2951) and sequences of the order Scleractinia (Uniprot

Taxon Identifier: 6125) as host. Another option of TransPi examines the presence and absence of

BUSCO genes in all the generated assemblies and creates a heatmap of genes distribution. This

option was tested with the epadomorph barnacle Octolasmis warwickii dataset (SRR10527303)

given the difference between TransPi and Trinity BUSCO scores for the missing category (see

Results).
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Table 1: Non-model organisms datasets used in this study.

Phylum Class Order Species SRA N of reads Length(bp)
Cnidaria Anthozoa Alcyonacea Pinnigorgia flava ERR3026433 30,545,400 50
Cnidaria Anthozoa Alcyonacea Sinularia cruciata ERR3026434 22,160,908 50
Cnidaria Anthozoa Alcyonacea Tubipora musica ERR3026435 23,006,724 50
Cnidaria Anthozoa Helioporacea Heliopora coerulea ERR3040053 29,000,821 50
Cnidaria Anthozoa Scleractinia Acropora palmata SRR5569439 10,476,071 75
Cnidaria Anthozoa Scleractinia Acropora pulchra SRR8601367 14,037,157 75
Cnidaria Anthozoa Scleractinia Porites pukoensis SRR8491966 16,448,725 150
Cnidaria Hydrozoa Anthoathecata Millepora alcicornis SRR4294206 24,645,545 150
Porifera Homoscleromorpha Homosclerophorida Oscarella pearsei SRR1042012 11,306,242 100
Porifera Homoscleromorpha Homosclerophorida Corticium candelabrum SRR504694 18,897,095 150
Porifera Demospongiae Spongillida Ephydatia muelleri SRR1041944 11,425,188 100
Porifera Demospongiae Spongillida Spongilla lacustris SRR1168575 5,136,881 100
Porifera Demospongiae Poecilosclerida Mycale phylophylla SRR1711043 11,408,543 100
Porifera Demospongiae Haplosclerida Haliclona tubifera SRR1793376 16,356,602 100
Porifera Demospongiae Dictyoceratida Ircinia fasciculata SRR7655554 13,420,109 100
Porifera Calcarea Leucosolenida Sycon coactum SRR504690 9,098,097 100
Mollusca Gastropoda Trochida Monodonta labio SRR1505119 10,388,770 100
Mollusca Bivalvia Pholadomyoida Lyonsia floridana SRR1560310 9,919,645 100
Mollusca Bivalvia Veneroida Mercenaria campechiensis SRR1560359 11,935,267 100
Mollusca Bivalvia Trigoniida Neotrigonia margaritacea SRR1560432 11,215,767 100
Mollusca Bivalvia Veneroida Cardites antiquatus SRR1560458 11,916,756 100
Mollusca Bivalvia Veneroida Sphaerium nucleus SRR1561723 18,539,173 100
Mollusca Bivalvia Nuculoida Ennucula tenuis SRR331123 14,420,942 100
Mollusca Bivalvia Ostreoida Dimya lima SRR3350463 5,426,850 150
Rotifera Monogononta Ploima Brachionus plicatilis SRR3404576 7,403,847 150
Arthropoda Branchiopoda Diplostraca Eoleptestheria cf ticinensis SRR5140141 5,471,351 150
Arthropoda Remipedia Nectiopoda Godzilliognomus frondosus SRR8280777 14,086,834 75
Arthropoda Arachnida Solifugae Galeodes sp SRR8745910 6,356,774 75
Arthropoda Hexanauplia Calanoida Neocalanus flemingeri SRR5873556 4,112,626 150
Arthropoda Hexanauplia Calanoida Calanus finmarchicus SRR4113507 10,633,606 150
Arthropoda Hexanauplia Pedunculata Octolasmis warwickii SRR10527303 15,813,391 150
Echinodermata Holothuroidea Aspidochirotida Apostichopus japonicus SRR8393254 8,289,770 150
Echinodermata Crinoidea Comatulida Florometra SRR3097584 32,710,859 100
Echinodermata Echinoidea Echinoida Paracentrotus lividus ERR1000783 6,803,316 75
Echinodermata Echinoidea Echinoida Paracentrotus lividus SRR10744002 13,583,857 75
Xenacoelomorpha - Acoela Childia submaculatum SRR3105702 6,089,955 100
Chaetognatha Sagittoidea Aphragmophora Krohnitta subtilis SRR7754744 15,954,007 100
Brachiopoda Rhynchonellata Rhynchonellida Hemithiris psittacea SRR1611556 9,221,875 100
Nemertea Enopla Bdellonemertea Malacobdella grossa SRR1611560 8,307,739 100
Nemertea Palaeonemertea - Cephalothrix linearis SRR1273789 4,869,244 75
Phoronida - - Phoronis psammophila SRR1611565 12,949,999 100
Platyhelminthes Catenulida - Catenula lemnae SRR1796434 3,028,636 100
Onychophora Udeonychophora Euonychophora Peripatopsis capensis SRR1145776 11,638,180 100
Onychophora Udeonychophora Euonychophora Peripatoides novaezealandiae SRR8745911 5,768,550 75
Gastrotricha - Macrodasyida Macrodasys sp SRR1271706 3,204,609 75
Gastrotricha - Chaetonotida Lepidodermella squamata SRR1273732 4,370,938 75
Annelida Polychaeta Phyllodocida Nephtys caeca SRR1232685 1,576,665 75
Gnathostomulida - Bursovaginoidea Gnathostomula paradoxa SRR1271607 5,954,962 75
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3 Results

3.1 Kmer selection and Reads length effect

Kmer test carried out on the model organisms used here (Supplementary Table 1) showed that

differences in BUSCO percentages between kmer sets (i.e. A, B, C) were not significant (Supple-

mentary Table 1). However, slightly higher single-copy and lower duplication BUSCO percentages

were observed with kmer set C (Figure 2; Supplementary Table 1; Supplementary File 1-4). This

pattern was observed in all three model organisms: Caenorhabditis elegans (worm), Drosophila

melanogaster (fly), and Mus musculus (mouse) (Supplementary File 1-4). The read length test

(i.e. 50 bp, 75 bp, 100 bp, and 150 bp) also showed no significant difference in complete BUSCO

percentages (Figure 3; Supplementary File 1-4). However, it should be noted that D. melanogaster

50 bp paired-end reads produced low complete BUSCO percentages for TransPi and Trinity (Com-

plete BUSCO mean <45%). On the contrary, D. melanogaster libraries with paired-end reads of

75 bp, 100 bp and 150 bp length showed high BUSCO percentages for both, TransPi and Trinity,

where Trinity surpasses TransPi by 1.0% (Figure 3; Supplementary File 1-4). A similar pattern of

a marginal difference between TransPi and Trinity (with 1.0% higher complete BUSCO percentage

in Trinity) was also observed for the C. elegans and M. musculus datasets (Supplementary File

1-4).

The major difference between TransPi and Trinity in the model organisms was observed in the

single-copy BUSCO category. This difference was more significant in the D. melanogaster and

M. musculus datasets. For the M. musculus 150 bp reads, the difference between the single-copy

BUSCO percentages was over 37% (Supplementary Table 1). In terms of fragmented and missing

BUSCO genes, TransPi scores were slightly higher (<1.0%) than for Trinity alone in most cases

(Supplementary Table 1; Supplementary File 1-4). The increase of read length showed no clear

effect on producing better BUSCO percentages on the majority of the model organisms datasets

(Supplementary File 1-4). The same was observed for the increase of the read quantities in the

datasets (Supplementary File 1-4). Only for D. melanogaster 50 bp reads, an increase ws observed
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Figure 2: Kmers selection tests on the model organisms C. elegans. Shown are the TransPi results for three different kmer settings for
read lengths of 50bp (A), 75bp (B), 100bp (C), and 150bp (D). For the kmer test performed with M. musculus and D. melanogaster
see Supplementary Files 1-4.
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in complete BUSCO percentages when incrementing reads quantity from 10M to 26M. The

other model organisms datasets did not show significant differences with respect to read quantities

(Supplementary File 1-4).

3.2 TransPi on non-model organisms

A similar trend as seen in the model organisms was observed in the non-model organisms datasets

(Figure 3; Supplementary Table 1). However, there were some key differences. First, results

of complete BUSCO percentages were higher for TransPi in 41 of the 49 datasets tested in the

study. The mean of complete BUSCO percentages was 79.57%±18.60 (median: 85%) for TransPi

and 78.14%±19.30 (median: 84.2%) for the Trinity assemblies. Of all datasets, 21 had complete

BUSCO percentages higher than 90% with TransPi and 17 with Trinity (Figure 4). Eleven and 13

datasets resulted in 80-90% identified complete BUSCO genes with TransPi and Trinity, respec-

tively. However, Kruskal-Wallis test showed no significant differences between TransPi and Trinity

(Table 2).

Second, there was a significant improvement of the percentage of identified complete single-copy

BUSCO genes. Mean percentages with TransPi and Trinity were 67.57±16.75% (median: 72.9%)

and 42.03±15.37% (median: 40.8%), respectively. For the single-copy BUSCO genes, 16 datasets

obtained scores higher than 80% with TransPi and none with Trinity (Figure 4). For the range of

70-80%, 11 datasets obtained scores in this range when using TransPi, whereas only one dataset

in this range was obtained when using Trinity (Figure 4). Statistical test (i.e. Kruskal-Wallis)

demonstrated a significant difference for the single-copy BUSCO percentages between TransPi

and Trinity (p-value 5.6e-10, Table 2). In the case of the nemertean worm Malacobdella grossa (

accession SRR1611560), single-copy BUSCO genes had a substantial change from 20.4% for Trinity

to 83% with TransPi (Supplementary File 5). Other dataset with significant changes included the

crinoid echinoderm Florometra serratissima (accession SRR3097584), where the scores for Trinity

and TransPi were 41.3% and 87.3%, respectively (Supplementary File 5).

Through the reduction step performed by EvidentialGene in TransPi, an expected substantial de-
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Figure 3: BUSCO results of non-model organisms (n=49). A full list of analysed taxa see table 2. A) BUSCO percentages comparison
for TransPi and Trinity for all datasets. Comparisons of scores by read length for complete (B), single-copy (C), and duplicated (D)
BUSCO genes. Significant differences (Kruskal-Wallis test p <0.05) were obtained for (B) and (C).
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crease of the duplication rate was observed. The means for duplicated BUSCO genes with TransPi

and Trinity were 12.0±9.96% (median: 9.7%) and 36.11±20.52% (median: 31.1%), respectively

(Figure 3-4; Supplementary Table 1). Kruskal-Wallis tests demonstrated a significant difference

for the duplicated BUSCO percentages (p-value of 9.60e-11, Table 2). Even though differences

in fragmented BUSCO percentages were not statistically significant, these values were lower for

datasets when using TransPi. In the case of missing BUSCO percentages, TransPi scores are higher

than Trinity (Supplementary File 5), although differences were not significant. These genes were

removed during the reduction step of EvidentialGene (see Discussion). It should be noted that

a few datasets were encountered where neither TransPi nor Trinity obtained complete BUSCO

percentages higher than 50%. These datasets are: the polychaete annelid Nephtys caeca ( acces-

sion SRR1232685), and the bivalve molluscs Mercenaria campechiensis (accession SRR1560359),

Sphaerium nucleus ( accession SRR1561723), and Cardites antiquatus (accession SRR1560458)

(Supplementary Table 1). However, the majority of the identified complete BUSCO genes in

these sets were single-copy in the TransPi assemblies (Supplementary File 5). On the other hand,

datasets such as the scleractinian coral Porites pukoensis (a accession SRR8491966) were observed

with complete BUSCO percentages of 99.4% with both TransPi and Trinity (with high duplication

rates in both).

As expected due to the transcripts reduction, the total number of transcripts in TransPi was lower

than with Trinity (Supplementary File 6). The mean for TransPi transcripts was 93,351 ± 89,863

(median: 73,435) and for Trinity transcripts 157,130 ± 142,410) (median: 109,261). The reduction

of transcript was also observed for the numbers of transcripts larger than 500 bp and 1,000 bp

(Figure 5). However, in terms of the longest transcript, the mean for TransPi was 23,684 bp ±

15,374 bp (median: 22,147 bp) and 20,668 bp ± 11,248 bp (median: 18,708 bp) for Trinity (Figure

5). Mapping of sequencing reads to the assembled transcripts showed lower mapping rates obtained

with TransPi than with Trinity (Figure 5; Supplementary File 7). The mean of the predicted genes

by TransPi and Trinity was 34,659±43,987 (median: 25,280) and 52,106±47,273 (median: 43,783),

respectively (Figure 5; Supplementary File 6). This reduction in TransPi vs Trinity mirrors the

reduction of duplicated BUSCOs results.
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Figure 4: Histogram of number of datasets and BUSCO percentages in 10% bins. Comparison of identified complete (including
duplicates) (A) and single-copy (B) BUSCO genes between TransPi and Trinity

15

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.18.431773doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.18.431773
http://creativecommons.org/licenses/by-nc/4.0/


3.3 TransPi Report

The report generated by TransPi is interactive (i.e., a HTML file is generated) and can be viewed

with standard web browsers (Supplementary File 10). The report allows the user to comprehen-

sively assess the data by zooming in in the figures, compare datasets, and see detailed info by

selecting specific data points. The report summarizes all major steps performed by the pipeline,

including quality filtering, assembly metrics, ORF numbers, annotation and KEGG pathway as-

signment using iPATH3 (Darzi et al. 2018). TransPi provides the user with multiple files for

further downstream analyses of the final reference transcriptome. For example, a file with all Gene

Ontologies is created and can be directly used as input for TopGO to perform enrichment analysis

(Alexa and Rahnenfuhrer, 2016). All final and key intermediate files, including all plots, are stored

in the user selected output directory for manual inspection.

3.4 Additional TransPi options

The dataset of Porites pukoensis (SRR8491966) produced a transcriptome with 567,526 sequences.

Despite having a high BUSCO completeness (i.e. 99.4%), the majority of these were duplicates (i.e.

61.2%) (Supplementary File 5). Using the filtration step of TransPi, the number of transcripts was

reduced by over 39% (from 567,526 to 343,832). The removed 223,694 transcripts had similarities

with the S. microadriaticum sequences used for filtering (See Methods 2.6). In the case of the

“buscoDist” option, the Octolasmis warwickii dataset (SRR10527303) was used and 30 genes that

were missing from the TransPi assembly but were present in the other assemblies were found

(Figure 6).

4. Discussion

De novo transcriptome assemblies are use in several applications such as: differential gene ex-

pression (Pita et al., 2018), gene model prediction (Chan et al., 2017), DNA target enrichment
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Figure 5: rnaQUAST results comparing TransPi and Trinity. A) Number of transcripts higher than 500bp, 1000bp, longest transcripts
and number of predicted genes in the transcriptome. B) Transcripts average length and N50. C) Histograms (10% bins) of all samples
and percentage of mapping (reads to transcriptome), BUSCO complete and BUSCO single (light color Trinity, dark color TransPi). D)
Percentage of mapping (reads to transcriptome), BUSCO complete and BUSCO single by individual samples (light color Trinity, dark
color TransPi).
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bait design (Quek et al., 2020), genome annotation (Testa et al., 2015; Holt and Yandell, 2011),

detection of whole-genome duplication (Yang et al., 2019), and phylogenetics (Cheon et al., 2020;

Lozano-Fernandez et al., 2019). Even though multiple software are currently available for tran-

scriptome assembly, no single tool is able to generate optimal assemblies given various datasets

(Hölzer & Marz 2019). Thus, combining multiple assemblies, generated with various kmers and

software, represents a valuable approach to increase the quality of reference assemblies (Lu et al.,

2013). Given the complexity of such analyses, automated workflows are desirable , including the

need for standardization, reproducibility, and scalability.

The selection of kmers is the first step before performing an assembly. The selection of this

parameter will modify how the assembly graph is constructed, and it was tested here how kmer

selection can have an effect in the effectiveness of the TransPi pipeline. Tests included different

kmer sizes, combination of kmers, and different organisms (Table 1). Since TransPi is relying

on multiple assemblers and various kmers, the effect on kmer selection and their impact on the

outcome of the pipeline is minimized. However, kmer set C consistently resulted in moderately

higher BUSCO percentages for single-copy genes and lower duplication levels, respectively. This

kmer set had a wider range of kmer sizes (from small to long) than the other sets. Small kmers

tend to generate more transcripts but are more prone to misassemblies (Zerbino & Birney, 2008;

Gibbons, 2009). On the contrary, longer kmers produce more contiguous assembly while decreasing

transcript numbers (Robertson et al., 2010). Thus, by combining various kmer sizes (i.e. short

and long kmers), a more comprehensive representation of the transcriptome can be achieved. The

use of different read lengths did not yield significant differences between TransPi and Trinity in

all three model organisms (i.e. worm, fly, and mouse) included in this study. Generally, Trinity

performed better than TransPi with respect to the ‘complete’ and ‘fragmented’ categories of the

metazoa BUSCO genes set. The major advantage of TransPi in the model organisms, however,

was the reduction of duplicated BUSCO genes (Figure 2).
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Table 2: Statistical tests on non-model organisms

Shapiro-Wilk (p >0.05)

TransPi Trinity
Normally
distributed

ANOVA
Kruskal-Wallis
(p <0.05)

Significant

Complete 5.09E-06 1.76E-05 no - 0.6492791 no
Single-copy 0.0001667 0.1081 no - 5.67E-10 yes
Duplicated 2.51E-07 0.008433 no - 9.60E-11 yes
Fragmented 0.0005825 0.002121 no - 0.1375242 no
Missing 1.81E-08 3.61E-09 no - 0.1413003 no

It has been previously shown that using more than 30M read pairs does not significantly improve the

quality of the transcriptome assembly (MacManes, 2018; Francis et al., 2013). However, in our tests

mixed results were observed when comparing reads quantities and BUSCO scores (Supplementary

File 5). As previously demonstrated, assembly quality and characteristics are data-dependent

(Hölzer & Marz 2019). Consequently, to provide a profound conclusion on the effects of reads

quantities in de novo transcriptome assemblies, a larger number of datasets from a broad range of

taxa, in addition to biological replicates for each taxon, are needed. Also, organisms with sources

of contamination, for example, of symbiotic origin, prey, parasites or eukaryotic overgrowth in the

target tissue, may need higher quantities of reads. In terms of read length, mixed results were

observed, and a conclusive comparison of TransPi and Trinity cannot be performed on the sample

size used in this study. However, the tests conducted on the three model organisms strongly

suggest the usage of longer reads (150bp) should be preferred, because those generally yielded

higher-quality transcriptomes with respect to the BUSCO results.

The newly established TransPi pipeline performed significantly better than the Trinity assembler

alone on non-model organisms (Figure 3). A high BUSCO completeness with a high number

of single-copy BUSCO genes was obtained for the majority of the non-model datasets used here

(Figure 3, 4). In the case of the ‘fragmented’ BUSCO genes category, TransPi produced lower

scores than Trinity due to the reduction step by EvidentialGene. Since the tool relies on sequence

features like coding sequence (CDS) content and length (Gilbert, 2013, 2019), fragmented CDS

will be less likely to pass the filtration step. The high number of single-copy BUSCO genes results

were statistically significant and are a major difference when comparing with the TransPi results of

model organisms. The reduction of transcript duplication is obviously beneficial for studies where
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the presence of duplicates would bias the interpretation of the results. Another major disadvantage

of keeping false isoforms is in phylogenomic analyses. Due to the relative ease of generation and

affordability, many phylogenomic studies analyse multi-gene alignments based on transcriptome

data instead of full genome data to estimate phylogenies (Lozano-Fernandez et al., 2019; Cheon et

al., 2020). By using TransPi, the automation of large-scale phylogenomic approaches, focusing on

thousands of proteins from many taxa, can be attained with ease in a scalable and reproducible

way.

As expected, the final number of transcripts was consistently lower for TransPi given the reduc-

tion performed by EvidentialGene (Figure 5). In some cases (Malacobdella grossa) the reduction

of transcripts was over 50% (Figure 5; Supplementary File 5). This explains why the mapping

percentages for TransPi were also lower than for Trinity. However, having reduced mapping rates

(i.e. TransPi) did not affect the content of BUSCO genes in the transcriptomes. For example, in

the Malacobdella grossa assembly, TransPi mapping was 65.41% versus 82.86% for Trinity (Figure

5; Supplementary File 5), but the difference of complete BUSCO genes was only 0.30% (Tran-

sPi=94.0%, Trinity=94.30%) and 62% (TransPi=83.0%, Trinity=20.4%) for single copy BUSCOs,

respectively. Thus, the reduction in mapping percentages is due to the reduction of redundant

transcripts (including allelic variants) rather than missing information from the assemblies. This

pattern was observed throughout the non-model organisms analysed here (Figure 5; Supplementary

File 5). In general, when the mapping percentage of TransPi was over 65%, satisfactory BUSCO

content in the transcriptomes (i.e. high BUSCO presence and in single copies) was observed. How-

ever, there were some cases where both TransPi and Trinity produced equally low BUSCO scores,

even though a relative high mapping percentage was obtained (Figure 5; Supplementary File 7).

This was the case for a Catenula lemnae dataset (SRR1796434), where read mapping percentage

was relatively high (74.69% and 89.37% for TransPi and Trinity, respectively), while the BUSCO

gene content (complete and single) were <53% (Figure 5; Supplementary File 7). In such cases,

the assemblies may not be optimal and likely do not represent the complete transcriptome of the

organism. (Figure 5; Supplementary File 7).

For the missing BUSCO category, TransPi produced assemblies with slightly higher values in
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Figure 6: Heatmap of BUSCO gene presence in all assemblers with multiple kmers that are found missing in TransPi for dataset of
Octolasmis warwickii (SRR10527303)
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comparison to the other assemblers. When a BUSCO gene is missing in TransPi (i.e. removed by

the EvidentialGene step), in some cases, these genes are found in the other individual assemblies

(Figure 6). EvidentialGene aims to keep the most valid biological transcript, discards the likely

not valid (based on specific measures), and decreases the redundancy of the multiple assemblers to

obtain a non-redundant consensus transcriptome assembly (Gilbert, 2019). However, by doing so,

some genes can be categorized as redundants, presumably, because better candidates were selected.

To get more insight into cases like the one above, the TransPi option “buscoDist” was used with

the Octolasmis warwickii dataset. Comparing the missing genes of all generated assemblies and

plotting the distribution of the BUSCO genes showed that TransPi had more missing genes that

were categorized in other assemblers as to be present (Figure 6). However, a considerable amount

of these genes were classified as duplicates by BUSCO. Since the BUSCO scores are indicators of

the transcriptome completeness, correcting them will provide a more realistic estimation on the

transcriptome quality of a given taxon. This TransPi option offers the user insight into the BUSCO

gene content and transcripts reduction by EvidentialGene to help better assess the quality of the

assemblies.

In certain cases, significant numbers of BUSCO genes were not retrieved by TransPi, Trinity or

any of the assemblers. Although this could be related to assembler performance, other factors

have been shown to alter transcriptome quality (e.g. RNA degradation, library preparation, se-

quencing depth, etc.) (Romero et al., 2014; Sultan 2014). In the non-model organisms, four of

the datasets yielded BUSCO complete percentages <50% in TransPi and Trinity (Supplementary

File 5). Three of these datasets (i.e. Mercenaria campechiensis (SRR1560359), Sphaerium nucleus

(SRR1561723), Cardites antiquatus (SRR1560458)) stem from the same Project and the same

taxonomic group, the molluscan class Bivalvia. Extraction of nucleic acids in molluscs is known to

be hampered by the presence of mucopolysaccharides and polyphenolic proteins, which can inhibit

PCR and lead to biases in RNA preservation and/or the extraction quantities and/or qualities

(Rzepecki et al., 1991; Gayral et al., 2011; Knutson et al., 2020). Nevertheless, BUSCO genes that

were retrieved exhibited low rates of duplication, highlighting how the incorporation of Evidential-

Gene into TransPi can also decrease redundancy in cases of low transcriptome completeness. For

the fourth dataset (Nephtys caeca (SRR1232685), a polychaete annelid), only a small number of
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1.5M read pairs were deposited in INSDC databases (i.e. NCBI’s Genbank), which helps to explain

the poor results (Supplementary File 5). Deeper sequencing of these particular specimens may well

lead to an improved transcriptome. This also might indicate that quantity of reads rather than the

quality of input material was the limiting factor for the generation of a complete transcriptome.

TransPi also addresses putative contamination issues that might affect a transcriptome by provid-

ing an additional option that performs filtering of “contaminants”. Datasets from organisms like

corals can represent a challenge during transcriptome assembly and downstream analyses due to

their endosymbiotic zooxanthellae (Shinzato et al., 2014). Thus, a filtration step is usually per-

formed to remove sequences that do not belong to the target (host) transcriptome (Veglia et al.,

2018). The filtration step of TransPi is a useful step in the cases of known contamination sources.

For example, in the dataset of the coral Porites pukoensis both programs, TransPi and Trinity

obtained high BUSCO completeness percentages. However, despite the reduction with Evidential-

Gene, single-copy BUSCO percentages were low and the percentage of duplicated BUSCO genes

was high in both, TransPi and Trinity. Given the shown strong efficiency of TransPi to remove

redundancy, the presence of many duplicates in this dataset may indicate the presence of algae

(symbionts) transcripts and/or contamination. Also, it has been previously reported that other

eukaryotes, particularly fungi, are commonly found in Porites pukoensis (Li et al., 2014). This

could potentially bias the outcomes and can strongly affect downstream analyses. Thus, using a

contaminant filtration step, as performed by TransPi, is beneficial to generate a cleaner and ac-

curate transcriptome assembly and provide the user with a host only transcriptome to be further

analyzed.

In summary, TransPi offers researchers working with non-model organisms the opportunity of a

comprehensive de novo transcriptome analysis, requiring minimum user input but without losing

the ability of a thorough analysis. The non-redundant assembly generated by TransPi can be

used directly in several downstream analyses including differential expression, gene modelling for

genome annotations, bait design and phylogenetics. Another key advantage of using TransPi is

that it offers reproducibility of the results with ease, where entire experiments can be repeated with

defined versions of all programs included in the workflow. It provides a user-friendly environment,
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easy deployment, and scalability by employing Nextflow. TransPi also has other additional features

to help gain extra insight into the assemblies. We anticipate that TransPi will be a valuable tool for

the generation of comprehensive de novo non-redundant transcriptome assemblies for non-model

organisms.
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