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Abstract 

Coherent genomic groups are frequently used as a proxy for bacterial species delineation

through  computation  of  overall  genome  relatedness  indices  (OGRI).  Average  nucleotide

identity  (ANI)  is  a  widely  employed method for  estimating relatedness between genomic

sequences. However, pairwise comparisons of genome sequences based on ANI is relatively

computationally intensive and therefore precludes analyses of large datasets composed of

thousands of genome sequences.

In  this  work  we  proposed  a  workflow  to  compute  and  visualize  relationships  between

genomic  sequences.  A  dataset  containing  more  than  3,500  Pseudomonas genome

sequences was successfully classified with an alternative OGRI based on  k-mer counts in

few hours with the same precision as ANI. A new visualization method based on zoomable

circle packing was employed for assessing relationships among the 350 groups generated.

Amendment  of  databases  with  these  Pseudomonas groups  greatly  improved  the

classification of metagenomic read sets with k-mer-based classifier. 

The developed workflow was integrated in the user-friendly KI-S tool that is available at the

following address: https://iris.angers.inra.fr/galaxypub-cfbp. 

Keywords : ANI, k-mers, circle packing, Pseudomonas, metagenome
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Background

Species is a unit of biological diversity. Prokaryotic species delineation historically relies on a

polyphasic approach based on a range of genotypic, phenotypic and chemo-taxonomic (e.g.

fatty acid profiles) data of cultured specimens. According to the List of Prokaryotic Names

with Standing in Nomenclature (LPSN), approximately 15,500 bacterial species names have

been currently validated within this theoretical framework [1]. According to different estimates

the number of bacterial species inhabiting planet Earth is predicted to range between 107 to

1012 species  [2,3],  the  genomics  revolution  has  the  potential  to  accelerate  the  pace  of

species description. 

Prokaryotic  species  are  primarily  described  as  cohesive  genomic  groups  and

approaches based on similarity of whole genome sequence, also known as overall genome

relatedness indices  (OGRI),  have been proposed  for  delineating  species.  Genome Blast

Distance Phylogeny (GBDP [4]) and Average nucleotide identity (ANI) are currently the most

frequently used OGRI for assessing the relatedness between genomic sequences. Distinct

ANI algorithms such as ANI based on BLAST (ANIb [5]), ANI based on MUMmer (ANIm [6])

or ANI based on orthologous genes (OrthoANIb [7]; OrthoANIu [8]; gANI,AF [9]), which differ

in their precision but more importantly in their calculation times [8], have been developed.

Indeed, improvement of calculation time for whole genomic comparison of large datasets is

an  essential  parameter.  As  of  November  2018,  the  total  number  of  prokaryotic  genome

sequences publicly available in the NCBI database is 170,728. Considering an average time

of 1 second for  calculating ANI values for one pair of  genome sequences, it  would take

approximately 1,000 years to obtain ANI values for all pairwise comparisons. 

The number of words of length k (k-mers) shared between read sets [10] or genomic

sequences [11] is an alignment-free alternative for assessing the similarities between entities.

Methods based on k-mer counts, such as SIMKA [10], Kmer-db [12] or Mash [13] can quickly

compute  pairwise  comparison  of  multiple  metagenome read  sets  with  high  accuracy.  In

addition, specific  k-mer profiles are now routinely employed by multiple read classifiers for

estimating the taxonomic structure of  metagenome read sets [14–16].  While these  k-mer
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based  classifiers  differ  in  terms  of  sensitivity  and  specificity  [17],  they  rely  on  accurate

genome databases for affiliating a read to a taxonomic rank.

The objective of the current work was to propose a workflow to quickly compute OGRI

and visualize  the outputs  in  an efficient  manner.  An alternative  method based on  k-mer

counts was first evaluated to study species delimitation on extensive genome datasets. We

employed  k-mer counting to assess the similarity among genome sequences belonging to

the Pseudomonas genus. Indeed, this genus contains an important diversity of species (n =

207), whose taxonomic affiliation is under constant evolution [18–24], and numerous genome

sequences are available in public databases. We also proposed an original visualization tool

based  on  D3  Zoomable  Circle  Packing  (https://gist.github.com/mbostock/7607535)  for

assessing  the  relatedness  of  thousands  of  genome  sequences.  Finally,  the  benefit  of

taxonomic curation of reference database on the taxonomic affiliation of metagenomics read

sets was assessed. The developed workflow was integrated in the user-friendly KI-S tool

which is available in the galaxy toolbox of CIRM-CFBP (https://iris.angers.inra.fr/galaxypub-

cfbp).
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Methods

Genomic dataset

All  genome sequences  (n=3,623  as  of  April  2017)  from  the  Pseudomonas genus  were

downloaded  from  the  NCBI  database

(https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/).

Calculation of Overall Genome Relatedness Indices 

The percentage of shared  k-mers between genome sequences was calculated with Simka

version 1.4 [10] with the following parameters (abundance-min 1 and k-mer lengths of 11, 13,

15, 17 and 19). Distances between genomic sequences were also calculated using k-mers

based methods including FastANI [25], Kmer-db [12] (with the following parameters -k 15,

distance min) and Mash [13]. The percentage of shared k-mer was compared to ANIb values

calculated  with  PYANI  version  0.2.3  [26].  Due  to  the  computing  time  required  for  ANIb

calculation, only a subset of  Pseudomonas genomic sequences (n=934)  were selected for

this comparison. This subset was composed of genome sequences containing less than 150

scaffolds. 

Development of KI-S workflow

An integrative workflow named KI-S (Kinship relationships Identification with Shared k-mers)

was developed. At the first step, the percentage of shared k-mers (k can be selected by the

user) between genome sequences is calculated with Simka [10] or estimated with Kmer-db

[12]. A custom R script is then employed to cluster the genome sequences according to their

connected components at different selected thresholds (e.g. 50% of shared 15-mers). The

clustering result  is  visualized with Zoomable Circle Packing representation with the D3.js

JavaScript library (https://gist.github.com/mbostock/7607535). The source code of the KI-S

workflow is  available  at  the  following  address:   https://sourcesup.renater.fr/wiki/ki-s

https://sourcesup.renater.fr/projects/ki-s/.  A wrapper  for  accessing  KI-S  in  a  user-friendly
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Galaxy tool  is  also available at  the following address:  https://iris.angers.inra.fr/galaxypub-

cfbp.

Taxonomic inference of metagenomic read sets

The taxonomic profilesClassification of  nine9 metagenomic read sets derived from seed,

germinating seeds and seedlings of the common bean (Phaseolus vulgaris var. Flavert) were

estimated with Clark version 1.2.4 [16] at the species level.  Clark is a method based on a

supervised  sequence  classification  using discriminative  k-mers [16].  These  metagenomic

datasets  were  selected  because  of  the  high  relative  abundance  of  reads  affiliated  to

Pseudomonas [27]. The following Clark default parameters –k 31 –t <minFreqTarget> 0 and -

o <minFreqtObject> 0 were used for the taxonomic profiling. Indeed reducing k increase the

number of read assignments but also increase the probability of misclassification [16]. Three

distinct Clark databases were employed: (i) the original Clark database from NCBI/RefSeq at

the species level (ii) the original Clark database supplemented with the 3,623 Pseudomonas

genome  sequences  and  their  original  NCBI  taxonomic  affiliation  (iii)  the  original  Clark

database supplemented with the 3,623 Pseudomonas genome sequences whose taxonomic

affiliation was corrected according to the reclassification based on the number of shared k-

mers. For this third database, genome sequences were clustered at >50% of 15-mers, which

corresponded to the species level.
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Results

Selection of optimal k-mer size, k-mers indexing softwares and percentage of shared

k-mers 

Using the percentage of shared k-mers as an OGRI for species delineation first required the

determination of the optimal k-mer size. This was performed by comparing the percentage of

shared  k-mers  with  SIMKA  [10]  to  a  widely  employed  OGRI,  ANIb  [5],  among  934

Pseudomonas genome  sequences.  Since  the  species  delineation  threshold  was  initially

proposed following the observation of a gap in the distribution of pairwise comparison values

[28],  the  distribution  profiles  obtained  with  k-mer  lengths  11,  13,  15,  17  and  19  were

compared to ANIb values. Short  k-mers (k  =11) were evenly shared by most strains and

therefore  non-discriminatory  (Fig.  1).  As  the  length  of  the  k-mer  increased  (k  ≥ 13),  a

multimodal  distribution  based  on  several peaks  was  observed  (Fig.  1).  This  multimodal

distribution reflects a genetic discontinuity previously observed in several studies [6, 9, 25].

For example, for k=15, the first peak observed (at 15% of shared 15-mers) is related to the

genome sequences that do not belong to the same species. Then, the peaks at 50 and 80%

shared  15-mers corresponded to genome sequences associated to the same species and

subspecies, respectively. The  last peak at 100% of shared  k-mers was related to identical

genome  sequences.  Since  increasing  k-mer  lengths  beyond  15  did  not  improve  the

resolution of the multimodal distribution but leads to a more rapid drop in the percentage of

shared k-mers between strains, we selected k=15 for subsequent analyses.

Several tools using k-mers for estimating genomes relatedness (e.g. FastANI, Simka,

Kmer-db, Mash) were available at the time of analysis. Mash outperformed all others tools in

term of computation time (Table 1). Indeed computation time of  15-mers for 934 genome

sequences  was  7  min  with  Mash  on  a  DELL Power  Edge  R510  server,  while  it  took

approximately 3 months for obtaining all ANIb pairwise comparisons.  The outputs of these

different softwares were next compared to ANIb (Fig. 2). FastANI was the best estimator of

OGRI as indicated by the strong linear relationship of average pairwise similarities with ANIb

values (Fig. 2). However, one small caveat is that sequence similarity values were ignored
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by  FastANI  when  below  0.76  value,  which  artificially  improved  the  linear  relationship.

According to these linear relationships, Simka and Kmer-db performed reasonably well for

ANIb values above 0.9, while MASH was restricted to ANIb values above 0.95. Hence, Kmer-

db and Simka were selected in KI-S workflow since these tools are the best compromise

between quick computation time and robust genome relatedness indexes (Table 1 and Fig.

2).

We next investigated what percentage of shared  15-mers corresponds to an ANIb

value of  0.95,  a threshold commonly employed for  delineating bacterial  species [5].  Fifty

percent of 15-mers were closed to an ANIb value of 0.95 (Fig. 2). More precisely, the median

percentage of shared 15-mers was 49% [34%-66%] for ANIb value ranging from 0.94 to 0.96.

The 934 genomic sequences were clustered in 329 and 315 groups at an ANIb value of 0.95

and 50% of  15-mers, respectively. The composition of these groups was identical between

the  two  approaches  for  302  groups  that  contained  808  genomic  sequences.  The  27

additional groups obtained with ANIb were nestled within the 13 additional groups derived

from 50% of shared 15-mers.

Classification of Pseudomonas genome sequences 

The percentage of shared  15-mers was then used to investigate the relatedness between

3,623  Pseudomonas publicly available genome sequences.  At  a threshold of 50% of  15-

mers, we identified 350 groups. The group containing the most abundant number of genome

sequences was related to P. aeruginosa (n = 2,341), followed by the phylogroups PG1 (n =

111), PG3 (n = 92) and PG2 (n = 74) of P. syringae species complex ([19]; Table S1). At the

clustering threshold employed, 185 groups were composed of a single genome sequence,

therefore highlighting the high  Pseudomonas strain diversity. Graphical representation of  -

hierarchical clustering by dendrogram for a large dataset is generally not optimal. Here we

employed  Zoomable  circle  packing  as  an  alternative  to  dendrogram  for  representing

similarity  between  genome sequences  (Fig.  3 and  FigS1.html).  The  different  clustering
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thresholds  that  can  be  superimposed  on  the  same  graphical  representation  allow  the

investigation of inter- and intra- groups relationships (Fig. 3 and FigS1.html). 

Improvement of taxonomic affiliation of metagenomic read sets.

The taxonomic composition of  metagenome read sets is frequently estimated with  k-mer

based  classifiers.  While  these  k-mer  based  classifiers  differ  in  terms  of  sensitivity  and

specificity,  they all  rely on accurate genome databases for affiliating a read to taxonomic

rank.  Here,  we  investigated  the  impact  of  database  content  and  curation  on  taxonomic

affiliation.  Using  Clark  [16]  as  a  taxonomic  profiler  with  the  original  Clark  database,  we

classified metagenome read sets derived from bean seeds, germinating seeds and seedlings

[27].  Adding  the  3,623  Pseudomonas genome  sequences  with  their  original  taxonomic

affiliation  from  NCBI  to  the  original  Clark  database  did  not  increase  the  percentage  of

classified  reads  (Fig.  4).  However,  adding  the  same  genome sequences  reclassified  in

groups according to their percentage of shared  k-mers (k=15; threshold= 50%) increased

1.4-fold on average the number of classified reads (Fig. 4).
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Discussion

Classification of  bacterial  strains on the basis on their  genome sequence similarities has

emerged over the last decade as an alternative to the cumbersome DNA-DNA hybridizations

[4, 29]. Although ANIb is one widely employed method for investigating genomic relatedness,

its intensive computational time prohibits its use for comparing large genome datasets [8]. In

contrast, investigating the percentage of shared k-mer is scalable for comparing thousands

of genome sequences.

In  a  method  based  on  k-mer  counts,  choosing  the  length  of  k is  a  compromise

between accuracy and speed.  The distribution of  shared  k-mer  values between genome

sequences is impacted by k length. For k = 15, four peaks were observed at 15%, 50%, 80%

and 100% of shared k-mers. The second peak is close to an ANIb value of 0.95 and falls in

the so called grey or  fuzzy zone [29]  where taxonomists  might  decide to split  or  merge

species. Hence, according to our working dataset, it seems that 50% of  15-mers is a good

proxy for estimating Pseudomonas group. Despite the diverse range of habitats colonized by

different Pseudomonas populations [22], it is likely that the percentage of shared k-mers has

to be adapted when investigating other bacterial genera. Indeed, since population dynamics,

lifestyle and location impact molecular  evolution, it  is  somewhat illusory to define a fixed

threshold for species delineation [30]. While 15-mers is a good starting point for investigating

infra-specific to infra-generic relationships between genome sequences, the computational

speed of KI-S offers the possibility to perform large scale genomic comparisons at different k

sizes to select the most appropriate threshold. 

Genomic  relatedness  using  whole  genome sequences  has  become the  standard

method for bacterial strain identification and bacterial taxonomy [4,29,31]. This is primarily

motivated by fast and inexpensive sequencing of bacterial genomes together with the limited

availability of cultured specimen for performing classical polyphasic approach. Whether full

genome sequences should represent  the basis  of  taxonomic classification is  an ongoing

debate between systematicians [32]. While this consideration is well beyond the objectives of

this work, obtaining a classification of bacterial genome sequences into coherent groups is of
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general  interest.  Indeed,  the number of  misidentified genome sequences is  exponentially

growing in public databases. A number of initiatives such as Digital Protologue Database

(DPD  [33]),  Microbial  Genomes  Atlas  (MiGA [34]),  Life  Identification  Numbers  database

(LINbase  [35])  or  the  Genome  Taxonomy  Database  (GTDB  [31])  proposed  services  to

classify and rename bacterial strains based on ANIb values or single copy marker proteins.

Using the percentage of shared k-mers between unknown bacterial genome sequences and

reference  genome  sequences  associated  to  these  databases  could  provide  a  rapid

complementary  approach  for  bacterial  classification.  Moreover,  KI-S  includes  a  friendly

visualization interface that  could help systematicians to curate whole genome databases.

Indeed, zoomable circle packing could be employed for highlighting (i) misidentified strains,

(ii) bacterial taxa that possess representative type strains or (iii) bacterial taxa that contain

few genome sequences. 

Association between a taxonomic group and its distribution across a range of habitats

is useful for inferring the role of this taxa on its host or environment. For instance, community

profiling approaches based on molecular marker such as hypervariable regions of 16S rRNA

gene have been helpful for highlighting correlations between host fitness and microbiome

composition. Higher taxonomic resolution of microbiome composition could be achieved with

metagenomics through k-mer based classification of reads. Using the Pseudomonas genus

as  a  use-case,  we  showed  that  increasing  the  breadth  of  genomic  database  without

investigating  the  relatedness  of  genome  sequences  did  not  improved  the  proportion  of

classified reads. Worse, an unresolved classification may limit the number of species-specific

k-mers identified by  CLARK and  therefore the number of classified reads. Interestingly, an

inverse relationship between the number of genome sequences in NCBI RefSeq database

and the number of classified reads at the species level was also recently highlighted with

other  k-mer-based read classifiers [36].  On the contrary, prior classification of the genomic

database improve the number of classified reads at the species level. Hence, investigating

the relationships between bacterial genome sequences not only benefits bacterial taxonomy

but also indirectly microbial ecology. 
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In  this  study  we  demonstrate  that  employing  a  database  with  a  classification  of  strains

reflecting  their  genomic  relatedness  greatly  improve  the  number of  classified  reads.

Therefore,  investigating  the  relationships  between  bacterial  genome sequences  not  only

benefits bacterial taxonomy but also microbial ecology. 
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Figures and Supplemental files 

Figure 1: Distribution of shared k-mers values. Relatedness between genome sequences

were estimated with ANIb (green) or shared  k-mers (blue). The  x axis represents ANIb or

percentage of shared k-mers while the y axis represents the number of values by class in the

subset of 934 Pseudomonas genomic comparison.

Figure 2 : Comparison of average pairwise similarity between genomes sequences.

Overall  genome  relatedness  indexes  of  934  Pseudomonas genomes  sequences  were

calculated with PYANI [26] and four different k-mers indexing softwares : FastANI [25], Simka

[10], Kmer-db [12] and MASH [13].

Figure  3:  Hierarchical  cClustering  of  Pseudomonas genome  sequences.  Zoomable

circle packing representation of  Pseudomonas genome sequences (n = 3,623). Similarities

between genome sequences were assessed by comparing the percentage of  shared 15-

mers. Each dot represents a genome sequence, which is colored according to its group of

species [19,24]. These genome sequences have been grouped at three distinct thresholds

for assessing infraspecific (0.75), species-specific (0.5) and interspecies relationships (0.25). 

Figure 4: Percentage of classified reads. Classification of metagenome read sets derived

from bean seeds, germinating seeds and seedlings with Clark [16]. Three distinct databases

were employed for  read classification:  the  original  Clark  database (red),  Clark  database

supplemented with 3,623 Pseudomonas genome sequences (green) and the Clark database

supplemented with 3,623 Pseudomonas genome sequences that were classified according

to their percentage of shared k-mers (blue). 
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Table 1 : Comparison of softwares that estimate genome relatedness. 

Software Time RAM Reference

PYANI 3 months ND 26

FastANI 11 days 15 Go 25

Simka 4 hours 18 Go 10

Kmer-db 40 minutes 25 Go 12

Mash 7 minutes 26 Mo 13

TableS1.csv  :  Pseudomonas groups.  Description  of  the  350  groups  obtained  after

clustering at 50% of shared 15-mers. For each group, the  Pseudomonas group [24] and

subgroup [19,24] are displayed.

FigureS1.html:  Zoomable  circle  packing  representation  of  Pseudomonas genome

sequences.  Similarities  between  genome  sequences  were  assessed  by  comparing  the

percentage of shared 15-mers. Each dot represents a genome sequence, which is colored

according to its group of species [19,24]. These genome sequences have been grouped at

three  distinct  thresholds  for  assessing  infraspecific  (0.75),  species-specific  (0.5)  and

interspecies relationships (0.25). 
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