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20 ABSTRACT
21 Poplar is a promising r�sourc� for wood production and th� d�v�lopm�nt of lignoc�l 
22 lulosic biomass, but curr�ntly availabl� vari�ti�s hav� not b��n optimiz�d for th�s�
23 purpos�s. Th�r�for�, it is critical to inv�stigat� th� g�n�tic variability and m�cha 
24 nisms und�rlying traits that aff�ct biomass yi�ld. Pr�vious studi�s hav� shown that
25 targ�t traits in diff�r�nt poplar sp�ci�s ar� compl�x, with a small numb�r of g�n�tic
26 factors having r�lativ�ly low �ff�cts compar�d to m�dium to high h�ritability. In this
27 study, a syst�ms biology approach was impl�m�nt�d, combining g�nomic, transcrip 
28 tomic, and ph�notypic information from a larg� coll�ction of individuals from natural
29 populations of black poplar from W�st�rn Europ�. Such an approach id�ntifi�d a
30 QTL and a g�n�, coding for chalcon� isom�ras� (CHI), as a candidat� for controlling
31 radial growth. Additionally, analysis of th� structur� and div�rsity of traits as w�ll as
32 CHI g�n� �xpr�ssion r�v�al�d a high all�lic fixation ind�x, link�d to th� g�ographical
33 origin of th� natural populations und�r study. Th�s� findings provid� insights into
34 how adaptiv� traits aris�, ar� s�l�ct�d, and maintain�d in th� populations. Ov�rall,
35 this study contribut�s to �nhancing th� us� of poplar as a valuabl� r�sourc� for sus 
36 tainabl� biomass production.
37
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40 Introduction
41 Tr��s play a crucial rol� in mitigating climat� chang� by s�qu�st�ring carbon from th� atmos 
42 ph�r� through photosynth�sis, and for�st �cosyst�ms ar� consid�r�d th� larg�st t�rr�strial car 
43 bon sinks on Earth (Pan �t al., 2011; Harris �t al., 2021). Th� futur� �volution of carbon s�qu�s 
44 tration in for�sts r�li�s h�avily on how th� growth rat� and lif�span of tr��s r�spond to th� chan 
45 ging climat� (Bri�n�n �t al., 2020; Zhou, 2022). Tr��s k��p accumulating carbon in th�ir trunks,
46 branch�s, and roots as th�y grow, which �nabl�s th�m to captur� and stor� atmosph�ric carbon
47 for s�v�ral d�cad�s or possibly c�nturi�s (Gr��n & K��nan, 2022). Th� major part of th� tr��
48 trunk is cr�at�d by th� cambium, and th� d�v�loping xyl�m constitut�s a compl�x and dynamic
49 syst�m that g�n�rat�s wood in accordanc� with th� s�asonal cycl� (Rathg�b�r �t al., 2016). Ho 
50 w�v�r, w� still lack an int�grativ� th�ory to und�rstand growth patt�rns b�caus� wood formation
51 r�quir�s th� coordination of many m�tabolic pathways (Bryant �t al., 2023).
52 Knowing and und�rstanding th� links b�tw��n ph�notyp�s and g�n�tic mutations is a major
53 chall�ng�. Such studi�s hav� �m�rg�d for poplar, a mod�l for tr�� biology, g�nomics, �volutio 
54 nary and �cological g�n�tics (Jansson & Douglas, 2007; Douglas, 2017). Furth�rmor�, cultivat�d
55 poplars hav� comm�rcial valu� for p��ling and v�n��r, lumb�r, pap�r pulp and ar� also us�d as
56 bio�n�rgy f��dstock du� to th�ir high biomass production and favourabl� c�ll wall ch�mistry
57 (Porth & El Kassaby, 2015; Taylor �t al., 2016; An �t al., 2021; Abr�u �t al., 2022). Populus nigra
58 is a d�ciduous tr�� sp�ci�s nativ� to Europ�, Asia and North Africa that occupi�s riparian �co 
59 syst�ms with div�rs� climat� rang�s (D� Rigo �t al., 2016). Th� g�n�tic structur� of this sp�ci�s
60 in its natural distribution ar�a is not �xt�nsiv�ly known. Y�t, som� studi�s hav� shown high g� 
61 n�tic div�rsity within populations and low but significant g�n�tic diff�r�ntiation b�tw��n riv�r ba 
62 sins, sugg�sting high l�v�ls of g�n� flow in W�st�rn parts of th� distribution (Smuld�rs �t al.,
63 2008; D�woody �t al., 2015; Wójki�wicz �t al., 2021). S�v�n anc�stral g�n�tic clust�rs w�r�
64 found in th� first g�nom� wid� g�notyping study of 838 nativ� individuals from 12 W�st�rn Eu 
65 rop�an riv�r basins (Faivr� Rampant �t al., 2016). How�v�r, anoth�r study of s�v�n sp�ci�s sho 
66 w�d that black poplar is highly structur�d with low div�rsity within populations (Mil�si �t al.,
67 2024). Th�s� r�sults may b� du� to th� fact that th� �cology of th� sp�ci�s is strongly influ�nc�d
68 by a v�ry dynamic �nvironm�nt, th� alluvial banks wh�r� it br��ds, r�sulting in a compl�x struc 
69 tur� (Gurn�ll & P�tts, 2006; Alimpić �t al., 2022).
70 Black poplar also shows a wid� ph�notypic div�rsity which can b� obs�rv�d on latitudinal
71 clin�s such as that obs�rv�d for l�af functional traits in r�spons� to drought (Vig�r �t al., 2016) or
72 on l�af morphology and structur� (Gu�t �t al., 2015b). Among th� obs�rvabl� ph�notyp�s,
73 growth traits and wood production ar� consid�r�d fundam�ntal for th� adaptation and producti 
74 vity of plant�d for�sts (Grattapaglia �t al., 2009). For �xampl�, th� biosynth�tic pathway of lignin,
75 an �ss�ntial compon�nt of wood, is known to aff�ct abiotic tol�ranc� and growth in Populus (Xi�
76 �t al., 2018). How�v�r, f�w g�n�tic studi�s hav� b��n carri�d out on traits r�lat�d to growth, and
77 �v�n f�w�r at th� g�nomic l�v�l using th� natural intrasp�cific div�rsity of tr��s. G�n�tic diff�r�n 
78 tiation b�tw��n natural populations of P. trichocarpa was found for growth and ph�nology, which
79 was high�r than th� rath�r w�ak diff�r�ntiation obs�rv�d at th� g�nom� l�v�l (Evans �t al., 2014;
80 Oubida �t al., 2015). This sugg�sts that local adaptation �xplains patt�rns of variation in th�s�
81 traits b�tt�r than g�n�tic drift alon�. Th� adaptiv� traits of poplar populations show variations d� 
82 p�nding on th� local climat� at th�ir g�ographic origin. Using g�nom� wid� association studi�s
83 (GWAS) on prov�nanc�s of P. trichocarpa, candidat� loci und�rlying bud ph�nology and bio 
84 mass hav� alr�ady b��n id�ntifi�d (Evans �t al., 2014; Zhang �t al., 2019). Bas�d on 113 natural
85 P. tremula g�notyp�s from Sw�d�n, a study show�d significant natural variation in growth and
86 wood r�lat�d traits and allow�d th� id�ntification of g�n�tic mark�rs associat�d with th�s� traits
87 (Escam�z �t al., 2023). In this cont�xt, th� OGDH �nzym� (2 oxoglutarat� d�hydrog�nas�) was
88 found to b� associat�d with variation in tr�� volum� and constitut�s an int�r�sting pot�ntial can 
89 didat� for improving st�m volum�. Within th� sam� coll�ction of Asp�n tr��s, a major and uniqu�
90 locus was also discov�r�d. It d�t�rmin�s th� timing of bud formation and facilitat�s adaptation to
91 diff�r�nt growing s�asons and cold�r climat�s (Wang �t al., 2018). A syst�ms g�n�tics approach



92 in a subs�t of th� sam� coll�ction link�d natural variation in lignin cont�nt and composition to r�s 
93 pons�s to m�chanical stimuli and nutri�nt availability (Luomaranta �t al., 2024). Furth�rmor�,
94 QTLs w�r� id�ntifi�d for st�m and biomass traits in s�v�ral mapping populations involving as
95 par�ntal sp�ci�s thos� typically us�d to g�n�rat� cultivat�d hybrids (P. deltoides, P. nigra and P.
96 trichocarpa). Of not�, th�s� studi�s r�port�d s�v�ral QTL hotspots for biomass accumulation in
97 diff�r�nt �nvironm�nts (Ra� �t al., 2008, 2009; Dill�n �t al., 2009; Monclus �t al., 2012).
98 Although QTL mapping studi�s in s�gr�gating prog�ni�s hav� r�port�d QTL hotspots that �x 
99 plain a larg� part of g�n�tic variation for growth, th� QTL r�solution was too limit�d to id�ntify th�
100 und�rlying candidat� g�n�s (Ra� �t al., 2009). On th� oth�r hand, GWAS can mak� us� of th�
101 rapid d�cay of linkag� dis�quilibrium in for�st tr��s (N�al� & Kr�m�r, 2011), but most studi�s
102 carri�d out so far for growth traits hav� r�port�d a limit�d numb�r of loci that individually do not
103 �xplain a larg� proportion of th� g�n�tic varianc� of this h�ritabl� trait (Mckown �t al., 2014; All 
104 wright �t al., 2016). Many studi�s sugg�st that compl�x traits ar� controll�d by multipl� loci, �ach
105 with rath�r small �ff�cts (Bradshaw & St�ttl�r, 1995; Grattapaglia �t al., 1996; Ra� �t al., 2007;
106 Wad� �t al., 2022). To go furth�r in und�rstanding ph�notyp�s and adaptation, th� g�nomics
107 toolbox and statistical m�thods as syst�ms biology approach mad� availabl� for r�s�arch ar�
108 constantly �volving (Pazhamala �t al., 2021). Th� r�volution com�s in particular from th� appli 
109 cations that “omics” t�chnologi�s hav� mad� possibl� for plants such as for�st tr��s (Plomion �t
110 al., 2016; Borthakur �t al., 2022). Thus, with th� progr�ssion of m�thodologi�s and th� r�duction
111 in th� costs of th�s� approach�s, a c�rtain numb�r of studi�s hav� �xamin�d at larg� scal� of
112 �ndoph�notyp�s lik� transcriptomic (Chat�ign�r �t al., 2020), prot�omic (Plomion �t al., 2006;
113 Castill�jo �t al., 2023; T�yssi�r �t al., 2023) or �v�n m�tabolomic (Rodrigu�s �t al., 2021) in
114 tr��s. Anoth�r study has advocat�d th� us� of RNAs�q to jointly id�ntify polymorphisms and
115 quantify th� transcriptomic variability across natural populations (D� Wit �t al., 2015). Such an
116 approach could contribut� to filling th� gap b�tw��n th� g�nom� and ph�notypic variation for
117 compl�x traits and furth�r contribut� to th� �xplanation of th�ir missing h�ritability (Mah�r, 2008;
118 Chandl�r �t al., 2014).
119 H�r�, w� r�port an int�grativ� approach �ncompassing population g�n�tics and g�nomics to 
120 g�th�r with transcriptomics to d�ciph�r th� g�n�tic archit�ctur� of s�condary growth in GWAS for
121 growth using ph�notypic data from natural populations of P. nigra �valuat�d in two common gar 
122 d�n �xp�rim�nts tog�th�r with SNP data from RNAs�q (Chat�ign�r �t al., 2020; Rogi�r �t al.,
123 2023). ByW� furth�r making� us� of multi omic information,th� transcriptomic data to w� diss�c 
124 t�d a major QTL for st�m radial growth id�ntifi�d by GWAS and pinpoint�d a candidat� g�n�
125 from th� flavonoid pathway. Finally, w� studi�d th� g�nomic and transcriptomic div�rsity of th�
126 candidat� g�n� and th� ph�notypic div�rsity across th� natural populations and could show that
127 th� polymorphismQTL is involv�d in growth diff�r�ntiation, sugg�sting an implication in local
128 adaptation.

129 Material and methods
130 Plant material and field experiments.
131 Th� compl�t� plant mat�rial and fi�ld manag�m�nt was pr�viously d�scrib�d (Gu�t �t al.,
132 2015a; G�br�s�lassi� �t al., 2017). Bri�fly, an initial �xp�rim�ntal d�sign bas�d on a total of
133 1,160 g�notyp�s of P. nigra, r�pr�s�ntativ� of th� sp�ci�s rang� in W�st�rn Europ�, was �sta 
134 blish�d in two contrasting common gard�ns locat�d at Orléans (Franc�, ORL, 47°50′N 01°54′E)
135 and Savigliano (Italy, SAV, 44°36′N 07°37′E) in 2008. In both sit�s, th� g�notyp�s w�r� r�plica 
136 t�d 6 tim�s in a randomiz�d compl�t� block d�sign. A pr�vious study, using a 12k Infinium array
137 (Faivr� Rampant �t al., 2016) was us�d to charact�riz� th� g�n�tic div�rsity within this coll�ction.
138 A subs�t of 241 g�notyp�s r�pr�s�ntativ� of th� natural div�rsity and originating from 10 riv�r
139 basins was s�l�ct�d. Bri�fly, a population structur� analysis on th� �ntir� coll�ction with 5,600
140 SNPs and th� mod�l bas�d anc�stry �stimation in th� ADMIXTURE softwar� (Al�xand�r �t al.,
141 2009) highlight�d som� introgr�ssion from th� cultivat�d compartm�nt (Lombardy poplar, ‘Ital 
142 ica’). Th� 241 g�notyp�s of th� pr�s�nt study w�r� s�l�ct�d to minimiz� such introgr�ssion by



143 s�tting a thr�shold of maximum 15% of th� anc�stral g�n�tic group corr�sponding to th� culti 
144 vat�d g�notyp�.

145 Climate data.
146 Climatic variations across th� locations of origin of th� populations w�r� analys�d by applying
147 principal compon�nt analysis on 19 annual bioclimatic variabl�s obtain�d from th� WorldClim
148 datas�t (Hijmans �t al., 2005Fick & Hijmans, 2017). Th� valu�s us�d ar� th� 30 y�ar av�rag�
149 (19670 to 1992000) with a r�solution of 1 km² p�r grid c�ll obtain�d from th� GPS location of th�
150 original natural populations. Th� first two principal compon�nts (PC1, 42% of �xplain�d varianc�,
151 and PC2, 22% of �xplain�d varianc�) corr�spond�d to th� w�ight�d pr�cipitation and t�mp�ra 
152 tur� variabl�s, r�sp�ctiv�ly.

153 Phenotyping.
154 W� hav� d�scrib�d in d�tail th� ph�notyping of 21 traits in pr�vious works (Chat�ign�r �t al.,
155 2020; Wad� �t al., 2022). Only th� circumf�r�nc� and th� basic d�nsity of th� wood (Infrad�n)
156 w�r� us�d in this study. Bri�fly, tr��s w�r� prun�d at th� bas� aft�r on� (SAV) or two y�ars of
157 growth (ORL), to r�mov� a pot�ntial cutting �ff�ct. Circumf�r�nc� r�f�rs to th� p�rim�t�r of th�
158 st�m m�asur�d at 1 m abov� th� ground with a m�asuring tap�. M�asur�m�nts w�r� m�asur�d
159 carri�d out on 2 y�ar old tr��s in wint�r 2010 2011 at SAV and in wint�r 2011 2012 at ORL. Ba 
160 sic d�nsity was d�t�rmin�d as pr�viously r�port�d as d�scrib�d in (Chat�ign�r �t al., 2020).
161 Bri�fly, it was m�asur�d on a pi�c� of wood from th� st�m s�ction harv�st�d for RNA s�qu�nc 
162 ing (s�� h�r�aft�r) following th� T�chnical Association of Pulp and Pap�r Industry (TAPPI) stan 
163 dard t�st m�thod T 258 "Basic d�nsity and moistur� cont�nt of pulpwood". For �ach sit�, th�
164 ph�notypic data w�r� analyz�d with a lin�ar mix�d mod�l to comput� g�notypic m�ans adjust�d
165 for micro �nvironm�ntal �ff�cts as d�scrib�d in (G�br�s�lassi� �t al., 2017). B�for� th� adjust 
166 m�nt of th� mod�l, a squar� root transformation was mad� to �nsur� th� normality and ho 
167 mosc�dasticity of th� r�siduals. This transformation was only n��d�d for circumf�r�nc� (not for
168 wood basic d�nsity).

169 Transcriptomic data.
170 RNA s�qu�ncing was carri�d out on young diff�r�ntiating xyl�m and cambium tissu�s col 
171 l�ct�d in 2015 from two r�plicat�s of th� 241 g�notyp�s locat�d in two blocks of th� Orl�ans
172 common gard�n, as d�scrib�d in (Chat�ign�r �t al., 2020). S�qu�ncing r�ads w�r� obtain�d to
173 provid� both transcriptomic and g�nomic data. Bri�fly, froz�n mill�d tissu� was us�d to isolat�
174 total RNA with RN�asy Plant kit (Qiag�n, Franc�), according to manufactur�r’s r�comm�ndations
175 and a tr�atm�nt with DNas� I (Qiag�n, Franc�) was mad�. Sampl�s of young diff�r�ntiating
176 xyl�m and cambium tissu�s of th� sam� tr�� w�r� pool�d in an �quimolar �xtract b�for� s�nding
177 it for th� s�qu�ncing at th� POPS platform with Illumina His�q2000. R�ads w�r� mapp�d to th�
178 P. trichocarpa v3.0 primary transcripts (availabl� in Phytozom� 13, Goodst�in �t al., 2012.) using
179 bowti�2 v2.4.1 (Langm�ad & Salzb�rg, 2012) and only transcripts with at l�ast 1 count in 10% of
180 th� sampl�s w�r� k�pt, yi�lding 34,229 f�atur�s. Th� raw count data w�r� normaliz�d by
181 Trimm�d M�an of M valu�s using th� R packag� �dg�R v3.26.4, calculat�d in counts p�r mil 
182 lions (CPM) and comput�d in 𝑙𝑜𝑔2(𝑛 + 1). At th� �nd, th� CPM w�r� fitt�d with a lin�ar mix�d
183 mod�l including batch and g�n�tic �ff�cts to �xtract th�ir g�notypic B�st Lin�ar Unbias�d Pr�dic 
184 tors (BLUPs). Th�s� g�notypic BLUPs of transcripts w�r� us�d for th� r�st of our analysis.

185 Genotypic data.
186 Th� full d�tails of g�notypic analysis hav� b��n d�scrib�d in (Rogi�r �t al., 2023), including
187 softwar� us�d, data filt�ring crit�ria and final SNP s�l�ction. Bri�fly, g�notyping data w�r� ob 
188 tain�d, using BWA MEM v0.7.12 to map th� r�ads into th� P. trichocarpa v3.0 r�f�r�nc� g�nom�
189 (availabl� in Phytozom� 13, Goodst�in �t al., 2012.) and th� SNPs w�r� call�d using 3 call�rs to
190 g�n�rat� a high confid�nc� SNP s�t. Th� 3 call�rs w�r� GATK 3.1 (Van d�r Auw�ra �t al.,



191 2013), Fr��Bay�s 0.9.20 (Garrison, 2012), and th� mpil�up command from SAMtools 1.3 (Li �t
192 al., 2009). Only th� SNPs id�ntifi�d by at l�ast 2 of th� 3 call�rs and with l�ss than 50% of miss 
193 ing valu�s w�r� s�l�ct�d. Missing valu�s w�r� imput�d using th� Fimput� v.2.2 program (Sar 
194 golza�i �t al., 2014) and compl�m�ntary g�notyping data pr�viously obtain�d with a 12 k Illumina
195 Infinium B�ad Chip array (Faivr� Rampant �t al., 2016). At th� �nd, w� obtain�d 878,957 SNPs
196 and from th�s�, 440,292 SNPs w�r� r�tain�d for this study aft�r filt�ring for a minimum all�l� fr� 
197 qu�ncy of 0.05.

198 Genetic analyses
199 Unl�ss oth�rwis� stat�d, all analys�s hav� b��n carri�d out with R v4.4.1 (R Cor� T�am,
200 2021) und�r th� RStudio �nvironm�nt (RStudio T�am, 2020).

201 Partition of variance
202 Th� following bivariat� mix�d mod�l was fitt�d to partition th� varianc� in circumf�r�nc�
203 across th� two sit�s into b�tw��n and within population g�n�tic variation and th�ir int�raction
204 with sit� using th� R packag� br��dR v 0.12 5 (Muñoz & Sanch�z, 2024):

205 (1) 𝑦 = 𝑦1
𝑦2 = 𝑋𝛽 + 𝑍𝑏𝑏 + 𝑍𝑤𝑤 + 𝜖

206 Wh�r� 𝑦 is a v�ctor of g�notypic adjust�d m�ans for circumf�r�nc� in ORL and SAV, 𝑋, 𝑍𝑏
207 and 𝑍𝑤 ar� d�sign matric�s r�lating obs�rvations to fix�d and random �ff�cts, 𝛽 is th� fix�d �ff�ct
208 of sit� and 𝑏 and 𝑤 ar� b�tw��n and within random g�n�tic �ff�cts. 𝑏 and 𝑤 follow a multivariat�

209 normal distribution with m�an 0 and varianc�s:
𝜎2𝑏1 𝜎𝑏12
𝜎𝑏21 𝜎2𝑏2

⛒𝐾𝑏 and
𝜎2𝑤1 𝜎𝑤12

𝜎𝑤21
𝜎2𝑤2

⛒𝐾𝑤. 𝐾𝑏 and 𝐾𝑤

210 ar� g�nomic r�lationship matric�s b�tw��n and within populations. Th�y w�r� �stimat�d from th�
211 full g�nomic r�lationship matrix comput�d with ldak softwar� v5 (Sp��d �t al., 2012), by av�rag 
212 ing th� kinships p�r population for 𝐾𝑏 and s�tting th� kinships at z�ro across populations for 𝐾𝑤.
213 Th� �stimat�d varianc� covarianc� param�t�rs w�r� th�n us�d to comput� th� following vari 
214 anc� compon�nts: b�tw��n and within population g�n�tics, and b�tw��n and within population
215 g�n�tics tim�s �nvironm�nt (Itoh & Yamada, 1990).

216 Population genetics
217 𝐹𝑆𝑇 was �stimat�d using W�ir and Cock�rham m�thod (W�ir & Cock�rham, 1984) and impl� 
218 m�nt�d in plink (v1.90b6.3). 𝑄𝑆𝑇 was �stimat�d using varianc� param�t�rs from th� pr�viously

219 d�scrib�d mix�d mod�l as: 𝑄𝑆𝑇 =
𝜎2𝑏

𝜎2𝑏+2𝜎
2
𝑤
.

220 GWAS
221 GWAS was p�rform�d for circumf�r�nc� in �ach sit� with g�notypic adjust�d m�ans and
222 SNPs, using a lin�ar mix�d mod�l as originally propos�d by (Yu �t al., 2005) and impl�m�nt�d in
223 th� R packag� MM4LMM (Laport� �t al., 2022). This mod�l includ�d a random polyg�nic �ff�ct
224 with a covarianc� structur� d�fin�d by a g�nomic r�lationship matrix comput�d with th� softwar�
225 ldak to account for linkag� dis�quilibrium b�tw��n SNPs (Sp��d �t al., 2012). W� also p�rform�d
226 multi locus GWAS using th� multi locus mix�d mod�l (MLMM) approach impl�m�nt�d in th� R
227 packag� MLMM v0.1.1 (S�gura �t al., 2012), as w�ll as multi �nvironm�nt GWAS carri�d out
228 with th� MTMM approach impl�m�nt�d in R (Kort� �t al., 2012). SNPs w�r� d�clar�d as signifi 
229 cant according to a Bonf�rroni corr�ct�d thr�shold of 5%. Linkag� dis�quilibrium b�tw��n signi 
230 ficantly associat�d SNPs was �stimat�d in R as th� squar�d all�lic co�ffici�nt.
231 GWAS w�r� also carri�d out using transcriptomic data (�QTL analysis) but focusing only on 2
232 g�n�s of particular int�r�st in this work, b�caus� th�y includ�d significant SNPs in th� GWAS.



233 Th� analys�s w�r� don� using both singl� and multi locus approach�s, as pr�s�nt�d for circum 
234 f�r�nc�.
235 W� also look�d at associations b�tw��n our candidat� SNP, latitud� of origin and climatic da 
236 ta at th� population l�v�l using a P�arson corr�lation t�st.
237 To validat� th� findings of pr�s�nt study, Ffurth�r t�sts w�r� carri�d with data pr�viously pu 
238 blish�d by (Pégard �t al., 2020) on a multi par�ntal population of P. nigra (factorial mating d�si 
239 gn). This datas�t consist�d of 629 individuals with g�notypic and circumf�r�nc� data. W� r�tri� 
240 v�d 46 SNPs within th� int�rval [chr10:20105000, chr10:20125000] corr�sponding to th� r�gion
241 of int�r�st in th� pr�s�nt study, and carri�d out association t�sts b�tw��n th�s� SNPs and th�
242 ph�notyp� using a simpl� lin�ar mod�l: 𝑦 = 𝑋𝛽 + 𝜖. 

243 Results
244 This study inv�stigat�s variations in st�m radial growth among natural populations of black
245 poplar using an int�grativ� approach with multi omics data. Ph�notypic �valuations w�r� con 
246 duct�d in two common gard�n �xp�rim�nts in Franc� and Italy (Gu�t �t al., 2015a ; G�br�s� 
247 lassi� �t al., 2017), whil� g�notypic charact�rization was achi�v�d using SNP data from RNAs�q
248 (Rogi�r �t al., 2023). This association b�tw��n ph�notypic and g�notypic data id�ntifi�d a major
249 locus, which includ�d two g�n� mod�ls annotat�d as a prot�in of unknown function (PUF) and a
250 chalcon� isom�ras� (CHI), r�sp�ctiv�ly. To g�t mor� insights into this association, transcriptomic
251 data from th� two g�n� mod�ls w�r� int�grat�d, tog�th�r with s�condary traits, such as wood
252 basic d�nsity. Finally, data from anoth�r population w�r� also analyz�d to validat� th� findings. 
253
254 A QTL controlling radial growth is highlighted by a genome wide association study.
255 W� p�rform�d a GWAS for circumf�r�nc� using 428,836 SNPs and d�t�ct�d a significant sig 
256 nal for this trait ph�notyp�d in Savigliano (Fig. 1a, Fig. S1), with a total of 18 significant SNPs,
257 including 11 on chromosom� 10 in strong linkag� dis�quilibrium. Clos�r �xamination of this r� 
258 gion show�d that th� signal is distribut�d ov�r two g�n� mod�ls: Potri.010G212900, annotat�d
259 as a B�ta H�xosaminidas� 1 (H�xo1)PUF and Potri.010G213000, annotat�d as a chalcon� iso 
260 m�ras� family prot�in (CHI) (Fig. 1b). In th� MLMM approach, th� whol� signal vanish�s out af 
261 t�r conditioning on th� top SNP, sugg�sting that a singl� all�l� is associat�d with th� trait in th�
262 r�gion (Fig. S12). This top SNP �xplain�ds mor� than 50 16% of th� ph�notypic variation (with 
263 out accounting for population structur�, Fig. 1c). Whil� non significant at th� g�nom� wid� l�v�l
264 wh�n consid�ring circumf�r�nc� at Orl�ans (p valu� = 0.0025, Fig. S23), this top SNP still �x 
265 plains�d mor� than 204% of th� ph�notypic variation in this common gard�n and its �ff�ct iwas in
266 th� sam� dir�ction as found in Savigliano (Fig. 1c). Cons�qu�ntly, a multi trait GWAS combining
267 ph�notyp�s from th� two common gard�ns confirm�d this signal but d�t�ct�d only a total of 7
268 significant SNPs (Fig. S34), mainly for th� global �ff�ct (i.�., common to th� two sit�s). Th�s� 7
269 SNPs id�ntifi�d in th� multi trait GWAS, ar� includ�d in th� 11 d�t�ct�d in singl� trait GWAS at
270 Savigliano and constitut� our cor� s�t of candidat� SNPs (Tab. S1). Among th�m, 6 ar� �xonic
271 (4 non synonymous and 2 synonymous) and 1 is in 5’UTR, unsurprisingly as th�y com� from
272 RNAs�q r�ads. In addition, th�y ar� all locat�d on th� CHI g�n� �xc�pt on�. It is worth m�ntion 
273 ing that th� top SNP is locat�d in an �xon of CHI g�n� and is pr�dict�d to b� non synonymous.
274



275

276 Figure 1  GWAS of th� circumf�r�nc� ph�notyp�. a) G�nom� wid� Manhattan
277 plot highlighting QTL on chromosom� 10 p�rform�d using a singl� locus mix�d
278 mod�l and 428,836 SNPs mark�rs from natural P. nigra div�rsity ph�notyp� at
279 Savigliano; b) Manhattan plots focus�d on SNPs with low�st p valu�s (color�d ac 
280 cording to th�ir LD with th� top SNP, as �stimat�d with th� squar�d all�lic corr�la 
281 tion co�ffici�nt r2) obtain�d and conc�rning 2 g�n� r�gionsmod�ls, with corr� 
282 sponding m�an cov�rag� of RNAs�q r�ads across individuals; c) Box plot of th�
283 circumf�r�nc� in both �xp�rim�ntal sit�s (transform�d with a squar� root, sqrt),
284 d�p�nding on th� all�l� count of th� alt�rnat� all�l� of th� candidat� SNP with th�
285 low�st p valu� (Chr10:20120195 with r�f�r�nc� and alt�rnat� all�l�s A and T, r� 
286 sp�ctiv�ly).

287 Gene expression sustains CHI as a candidate gene.
288 W� us�d th� RNAs�q data, g�n�rat�d from th� xyl�m and cambium tissu�s of poplars grown
289 at Orléans as an �ndoph�notyp� to t�st wh�th�r th� �xpr�ssion of our candidat� g�n�s corr� 
290 lat�d with th� ph�notyp�s and could b� link�d to th� �ff�ct of on� of th�m. N�gativ� corr�lations
291 w�r� found b�tw��n g�n� �xpr�ssions and ph�notyp�s, and th�ir magnitud� was high�r for CHI
292 than for H�xo1PUF (Fig. 2a, Fig. 2b), with rR2 of  0.573 (p valu� < 2.2� 16) and  0.635 (p valu�
293 < 2.2� 16) for circumf�r�nc� �valuat�d in Savigliano and Orl�ans, r�sp�ctiv�ly. Wh�n using th�
294 �xpr�ssion of both g�n�s to jointly �xplain ph�notyp�s, th� corr�lation b�tw��n CHI g�n� �x 
295 pr�ssion and circumf�r�nc� was maintain�d (rR2 =  0.4970, p valu� < 2.2� 16 at Savigliano and
296 rR2 =  0.250, p valu� = 3.41� 16 at Orl�ans) whil� it drastically dropp�d for H�xo1PUF (rR2 =
297 0.0046, p valu� = 0.372 at Savigliano and rR2 =  0.0523, p valu� = 4.53� 04 at Orl�ans). W�
298 also mad� us� of transcriptomic data for CHI and H�xo1PUF to p�rform an �QTL analysis, which
299 highlight�d a strong cis control for th� 2 g�n�s (Fig. 2c). Th� fact that th�s� two g�n�s ar� clos�
300 from �ach oth�r and in opposit� dir�ctions on th� g�nom�, tog�th�r with th� �xist�nc� of strong
301 LD in th� r�gion (Fig. 1b), g�n�rat�s a positiv� corr�lation b�tw��n th�ir �xpr�ssions (rR2 =
302 0.1943, p valu� = 7.1� 12). But, wh�n focusing on th� r�gion of int�r�st, w� obs�rv�d diff�r�nt
303 patt�rns of �QTL signal b�tw��n th� 2 g�n�s (Fig. 2d). Int�r�stingly, th� patt�rn of �QTL for CHI
304 g�n� was similar to th� on� obs�rv�d for circumf�r�nc� (Fig. 2d, Fig. 1b). Altog�th�r, th�s� r� 
305 sults support�d CHI as a candidat� g�n� for th� control of circumf�r�nc� variability.
306
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308  
309
310 Figure 2  �QTL analysis sustains CHI (Potri.01G213000) as a candidat� g�n� for
311 th� control of circumf�r�nc� variation. a) corr�lation b�tw��n th� circumf�r�nc�
312 and th� �xpr�ssion l�v�l of H�xo1PUF primary transcript (Potri.010G212900.1) ;
313 b) corr�lation b�tw��n th� circumf�r�nc� and th� �xpr�ssion l�v�l of CHI primary
314 transcript (Potri.010G213000). c) Manhattan plot and d) focus on th� candidat� r� 
315 gion of th� �QTL analysis using th� variations in th� �xpr�ssion l�v�l of th� 2 pri 
316 mary transcripts pr�viously highlight�d as ph�notyp�s. Circumf�r�nc� was trans 
317 form�d with a squar� root (sqrt). Th� �xpr�ssion l�v�l of transcripts�d hav� b��n
318 standardiz�d with a g�n�tic analysismix�d lin�ar mod�l (s�� Mat�rial and m�th 
319 ods).

320 Structure of the diversity of the CHI gene highlighted by population scale analyses.
321 To furth�r charact�riz� th� �ff�ct of th� top SNP on th� ph�notypic variability, w� partition�d
322 th� varianc� of circumf�r�nc� across locations into b�tw��n population and within population
323 g�n�tic �ff�cts, th�ir int�raction with location, and a r�sidual t�rm (Fig. 3). This analysis show�d
324 that a larg� part of th� ph�notypic variation (35%) was du� to g�n�tic diff�r�nc�s b�tw��n pop 
325 ulations, follow�d by int�raction varianc� b�tw��n g�n�tics within populations and location
326 (25%), g�n�tic varianc� across populations (20%), and int�raction varianc� b�tw��n g�n�tics
327 across populations and location (17%). Int�r�stingly, wh�n th� top SNP was includ�d as a fix�d
328 �ff�ct in this varianc� partitioning mod�l, it �xplain�d up to 24% of th� total ph�notypic varianc�,
329 and this part of variability was mainly from th� b�tw��n population g�n�tic compon�nt (Fig. 3,
330 mod�l 2). This analysis sugg�sts that th� QTL, pr�viously id�ntifi�d by GWAS, is driv�n by dif 
331 f�r�nc�s in radial growth at th� population l�v�l.
332



333

334 Figure 3  Partition of ph�notypic varianc� for circumf�r�nc� across two locations
335 using two mod�ls: Mod�l 1 (mod.1) r�f�rs to th� mod�l of varianc� partition with 
336 out th� top SNP (Chr10:20120195), whil� mod�l 2 (mod. 2) is th� mod�l that in 
337 clud�s th� top SNP as a cofactor. Btw pop and With pop r�f�r to b�tw��n and
338 within population varianc�s, whil� G and GE r�f�r to g�n�tic and g�n�tic by �nvi 
339 ronm�nt varianc�, r�sp�ctiv�ly.

340 To confirm this obs�rvation, w� comput�d th� fixation ind�x (FST) of th� 428,836 SNPs and
341 look�d at th� valu� of th� top SNP d�t�ct�d by th� GWAS. This SNP display�d a high FST valu�
342 (0.69) w�ll abov� th� 99th p�rc�ntil� (0.28) of th� g�nom� wid� FST distribution (Fig. 4a). Such a
343 high fixation ind�x is du� to a fixation of th� r�f�r�nc� all�l� in s�v�ral populations mainly from
344 th� north �ast of th� studi�d ar�a (NL, Kuhkopf, Rhin, Ticino), a fixation of th� alt�rnativ� all�l� in
345 som� population from c�ntral (Loir�, Val d’Alli�r) and south�rn (Ramièr�s) Franc� and south�rn
346 Italy (Bas�nto), and a balanc�d situation in int�rm�diat� populations b�tw��n th�s� �xtr�m�s
347 (Drans� and Paglia) as w�ll as in th� population of south w�st�rn Franc� (Adour) (Fig. 4b). In 
348 t�r�stingly, such a g�n�tic diff�r�ntiation is also obs�rv�d at th� ph�notypic l�v�l as w�ll as at
349 th� transcriptomic l�v�l for CHI g�n�, as highlight�d by high QST valu�s (Fig. 4a) and population
350 diff�r�nc�s (Fig. 4c). Cons�qu�ntly, associations b�tw��n SNP and traits (Fig. 5a) or g�n� �x 
351 pr�ssion (Fig. 5b), as w�ll as corr�lations b�tw��n traits and g�n� �xpr�ssion (Fig. 5c), w�r�
352 high and significant wh�n �stimat�d at th� population l�v�l, �xc�pt for th� trait �valuat�d at Or 
353 l�ans, which is consist�nt with th� r�sults obtain�d at th� individual l�v�l (Fig. S45).
354
355
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357
358 Figure 4  Structur� of th� div�rsity. a) Distribution of g�nom� wid� Fst tog�th�r
359 with sp�cific valu�s indicat�d by v�rtical lin�s: 99th p�rc�ntil� of th� distribution,
360 top SNP (Chr10:20120195) Fst, CHI (Potri.010G213000.1) �xpr�ssion Qst, cir 
361 cumf�r�nc� at Orléans and Savigliano Qsts. b) G�ographical origin of populations
362 tog�th�r with th� distribution of all�l�s within �ach population for th� top SNP
363 (Chr10:20120195), th� siz� of th� pi� is proportional to th� siz� of th� population.
364 c) Distribution of circumf�r�nc�s at Orléans and Savigliano, as w�ll as CHI
365 (Potri.010G213000.1) �xpr�ssion across populations.
366

367
368 Figure 5  Associations at th� population scal�. a) Corr�lation b�tw��n circumf�r 
369 �nc� at Savigliano and alt�rnat� all�l� fr�qu�nci�s for th� top SNP
370 (Chr10:20120195); b) corr�lation b�tw��n CHI (Potri.010G213000.1) �xpr�ssion
371 and alt�rnat� all�l� fr�qu�nci�s for th� top SNP (Chr10:20120195); c) corr�lation
372 b�tw��n circumf�r�nc� at Savigliano and CHI (Potri.010G213000.1) �xpr�ssion.



373 Validations and interpretations.
374 To support our findings, w� compl�m�nt�d our study by s�v�ral analys�s. First, w� look�d at
375 co localizations b�tw��n th� QTL d�t�ct�d in th� pr�s�nt study and QTLs pr�viously r�port�d in
376 th� lit�ratur�. Of particular int�r�st, w� found in th� sam� g�nomic r�gion a QTL pr�viously r� 
377 port�d by Ra� �t al. (2009) for s�v�ral traits r�lat�d to biomass production in an int�rsp�cific
378 poplar prog�ny, and nam�d poplar biomass locus 3 (PBL3). PBL3 includ�d s�v�ral QTLs for
379 h�ight and diam�t�r found across multipl� y�ars, and it was d�limit�d by two SSRs (ORPM149
380 and PMGC2786). W� r�tri�v�d th� coordinat�s of th�s� mark�rs on th� P. trichocarpa r�f�r�nc�
381 g�nom� by blasting th�ir priming s�qu�nc�s. Th� r�sulting int�rval in bp was [17566502,
382 21189318] (Fig. S65). It thus fully includ�s th� QTL r�port�d h�r� which spans th� int�rval
383 [20105000, 20125000] (Fig. 1b). S�cond, w� r�tri�v�d data from intrasp�cific cross�s of P. nigra
384 carri�d out within th� Fr�nch br��ding program and pr�viously us�d and r�port�d by (Pégard �t
385 al., 2020) for g�nomic pr�diction. From th� SNP s�t in this pr�vious study, w� id�ntifi�d 46 SNPs
386 that f�ll within th� int�rval and t�st�d associations b�tw��n �ach of th�s� SNPs and th� ph�no 
387 typ� circumf�r�nc� in a pan�l of 629 individuals r�sulting from thos� cross�s. Th� most signifi 
388 cant association (p = 2.43� 05) was found for a SNP locat�d at 20 119 788 bp (407 bp from th�
389 top SNP) (Fig. S67), which was also found significant in th� pr�s�nt study with an �ff�ct in th�
390 sam� dir�ction (alt�rnativ� all�l� associat�d with an incr�as� in circumf�r�nc�). Finally, to pro 
391 vid� som� biological int�rpr�tation to our findings, w� r�tri�v�d data on wood basic d�nsity m�a 
392 sur�d on sampl�s coll�ct�d at Orléans. Th� top SNP display�d a significant association with
393 wood basic d�nsity, with a positiv� �ff�ct of th� alt�rnat� all�l�, which was thus opposit� to th�
394 �ff�ct found for circumf�r�nc� (Fig. S8a). Similarly, a significant positiv� corr�lation was found
395 b�tw��n wood basic d�nsity and CHI g�n� �xpr�ssion whil� such corr�lation was n�gativ� for
396 circumf�r�nc� (Fig.5a, Fig.5c, Fig. S8b).

397 Discussion
398 W� mad� us� of growthcircumf�r�nc� data coll�ct�d in two common gard�n �xp�rim�nts to 
399 g�th�r with transcriptom� wid� SNP data to s�arch for g�n�tic associations b�tw��n g�notyp�
400 and ph�notyp� in P. nigra. Such analysis pinpoint�d a small g�nomic r�gion locat�d at th� distal
401 �nd of chromosom� 10 which �ncompass�d 2 g�n� mod�ls, of which on� was annotat�d as a
402 chalcon� isom�ras� (CHI). Transcriptomic data within on� of th� two common gard�ns furth�r
403 support�d an implication of CHI in th� ph�notypic variation. B�caus� th� black poplar coll�ction
404 was structur�d into subpopulations corr�sponding to th� g�ographic origins of th� acc�ssions,
405 w� furth�r focus�d on diff�r�nc�s b�tw��n subpopulations and found that CHI div�rsity is a main
406 driv�r of growth diff�r�nc�s at th� subpopulation scal�. Such findings sugg�st an implication of
407 this g�n� in local adaptation. Finally, w� s��k to validat� our r�sults with data from pr�vious
408 works and found that our significant loci match a pr�viously r�port�d QTL hotspot for biomass
409 accumulation in an int�rsp�cific poplar family (Ra� �t al., 2009). W� furth�r validat�d th� �ff�ct of
410 th� QTL in an ind�p�nd�nt pan�l with a P. nigra p�digr�� from th� Fr�nch br��ding program
411 (Pégard �t al., 2020).
412 Th� strong�st �ff�ct in th� GWAS was found for th� ph�notypic data coll�ct�d in th� common
413 gard�n (SAV) wh�r� th� g�n�tic variability for growth was th� larg�st. This sit� �nabl�d a b�tt�r
414 �xpr�ssion of th� ph�notypic variability for growth. Unfortunat�ly, transcriptomic �valuation was
415 carri�d out in th� oth�r common gard�n (ORL). Cons�qu�ntly, it is hard to conclud� on th� int�r 
416 play b�tw��n SNP variation and g�n� �xpr�ssion to �xplain th� variation in growth. Ind��d, if w�
417 run a m�diation analysis, as propos�d by Sasaki �t al. (2018), using ph�notypic data from SAV,
418 w� cannot conclud� that th� �xpr�ssion of CHI m�diat�s th� g�n�tic association (data not
419 shown). Whil� if w� r�p�at such analysis with ph�notypic data from ORL w� find that th� asso 
420 ciation is m�diat�d by CHI �xpr�ssion, although th� association with growth at ORL is not signi 
421 ficant g�nom� wid�. Y�t, th� fact that g�n� �xpr�ssion data w�r� coll�ct�d from a diff�r�nt sit�
422 than th� on� in which th� GWAS is significant and on tr��s of diff�r�nt ag�s, und�rlin�s th� ro 
423 bustn�ss of th� r�sults.



424 Anoth�r complication with th� loci d�t�ct�d originat�s from th� confounding �ff�ct of popula 
425 tion structur�. Ind��d, th� ph�notyp�, g�n� �xpr�ssion as w�ll as polymorphisms display a signi 
426 ficant variability across populations which driv�s th� corr�lations and associations b�tw��n th�m.
427 Such a situation is not id�al for association mapping, and th� confounding �ff�ct attribut�d to po 
428 pulation structur� has to b� sp�cifically handl�d by th� statistical mod�l appli�d, usually a lin�ar
429 mix�d mod�l with a random polyg�nic �ff�ct having as covarianc� th� g�nomic r�lationship b�t 
430 w��n individuals (Yu �t al., 2005). In addition, w� us�d th� program ldak to account for LD b�t 
431 w��n polymorphisms in th� �stimation of th� r�lationships (Sp��d �t al., 2012), r�quir�d to b�
432 ind�p�nd�nt, b�caus� our SNPs com� from RNAs�q and ar� thus clust�r�d by g�n�s with po 
433 t�ntially som� strong LD b�tw��n n�ighbouring SNPs. Th� corr�ction appli�d within th� lin�ar
434 mix�d mod�l with such a matrix app�ar�d to b� mild�r than th� on� achi�v�d with a r�gular
435 GRMg�nomic r�lationship matrix such as th� on� �stimat�d following (VanRad�n, 2008), r�sul 
436 ting in a significant signal. Pl�as� also not� that w� did not consid�r including a fix�d �ff�ct of th�
437 population structur� in th� mod�l, which would in�vitably cl�an th� signal, sinc� th� ph�notyp� is
438 h�avily structur�d. Such a complicat�d situation und�rlin�s th� n��d to validat� th� association,
439 which was achi�v�d through two main approach�s. First, w� found that th� d�t�ct�d locus falls
440 within a QTL hotspot for biomass pr�viously r�port�d in s�v�ral mapping populations (Ra� �t al.,
441 2008, 2009; Dill�n �t al., 2009; Monclus �t al., 2012). S�cond, w� hav� shown that on� of th�
442 significant SNP aff�cts also th� growth in a larg� coll�ction of P. nigra from a br��ding p�digr��
443 pr�viously us�d for t�sting g�nomic pr�diction in black poplar (Pégard �t al., 2020). Whil� statis 
444 tically significant, th� �ff�ct of th� SNP is low�r than in th� natural populations. This could pot�n 
445 tially b� �xplain�d by GxE int�raction sinc� w� alr�ady found that th� SNP �ff�ct is diff�r�nt b�t 
446 w��n th� two common gard�n �xp�rim�nts and th� P. nigra p�digr�� from Pégard �t al. (2020)
447 was �valuat�d in a diff�r�nt location within a quit� diff�r�nt climatic ar�a (oc�anic climat�).
448 Anoth�r way of validating th� locus would b� to gain insights into th� biological m�chanism
449 r�lating th� polymorphisms to th� trait through th� �xpr�ssion of CHI. Consid�ring th� polymor 
450 phisms, w� could id�ntify four non synonymous SNPs significantly associat�d with th� ph�no 
451 typ�, on� in th� first �xon and thr�� in th� s�cond �xon of th� g�n�, including th� top SNP (Tab.
452 S1). Int�r�stingly, som� of th�s� SNPs (Tab. S1) ar� part of nucl�otid� tripl�ts that map to stop
453 codons (Chr10 20120172) or involv� nucl�otid�s v�ry clos� to th�m (Chr10 20120195). In addi 
454 tion, th�r� ar� two alt�rnativ� transcripts for CHI g�n�: Potri.010G213000.3 and Po 
455 tri.010G213000.2. Th� latt�r is short�r (th� last �xon could b� missing), most lik�ly du� to th�
456 pr�s�nc� of SNPs link�d to stop codons, implying that a variant is associat�d with a truncat�d
457 and probably nonfunctional prot�in. W� could thus hypoth�siz� that on� or s�v�ral of th�s�
458 SNPs aff�ct th� �nzymatic activity of CHI, for which a c�llular r�spons� could b� an ov�r�xpr�s 
459 sion of th� g�n� as comp�nsation. This would b� consist�nt with th� obs�rv�d positiv� r�lation 
460 ship b�tw��n th� most significant polymorphism and th� �xpr�ssion of CHI (Fig. 5b). Also, th�
461 d�cr�as� in th� �nzymatic activity of CHI for individuals carrying th� alt�rnat� all�l� of th� top
462 SNP could b� consist�nt with th� d�cr�as� in growth obs�rv�d in th�s� individuals (Fig. 1c).
463 Anoth�r hypoth�sis to �xplain th� n�gativ� corr�lation b�tw��n growth and CHI �xpr�ssion could
464 b� a trad� off b�tw��n growth and wood quality (Nova�s �t al., 2010). To t�st this hypoth�sis, w�
465 r�tri�v�d data on wood d�nsity m�asur�d on sampl�s coll�ct�d at Orléans. Th� top SNP dis 
466 play�d a significant association with wood d�nsity, with a positiv� �ff�ct of th� alt�rnat� all�l�,
467 which was thus opposit� to th� �ff�ct found for circumf�r�nc� (Fig. S7a). Similarly, a significant
468 positiv� corr�lation was found b�tw��n wood d�nsity and CHI g�n� �xpr�ssion whil� such cor 
469 r�lation was positiv� for circumf�r�nc� (Fig. S7b). Th�s� r�sultsWood basic d�nsity data provi 
470 d�d som� �vid�nc� for th� �ff�ct of CHI on th� trad� off b�tw��n wood growth and d�nsity. CHI
471 is a k�y �nzym� in th� flavonoid biosynth�tic pathway, wh�r� it catalyz�s th� cyclization of a c�n 
472 tral int�rm�diat� for th� production of major flavonoids such as flavanon�s, flavonols, and antho 
473 cyanins. Flavonoids play �ss�ntial rol�s in d�f�nc�, pigm�ntation, and �nvironm�ntal adaptation,
474 and CHI could thus b� involv�d in th�s� proc�ss�s. How�v�r, this m�tabolic pathway comp�t�s
475 with lignin biosynth�sis, as th�y shar� th� common pr�cursor p coumaroyl CoA (Mahon �t al.,
476 2022). Int�r�stingly, a pr�c�dingvious study r�v�al�d that sil�ncing hydroxycinnamoyl CoA shi 



477 kimat�/quinat� hydroxycinnamoyl transf�ras� (HCT) in Arabidopsis thaliana involv�s an accumu 
478 lation of flavonoids and a r�duction of plant growth (B�ss�au �t al., 2007). How�v�r, this r�lation 
479 ship b�tw��n lignin and growth was lat�r found to b� unr�lat�d to flavonoids (Li �t al., 2010).
480 Anoth�r int�r�sting hypoth�sis to r�lat� fllavonoids and growth could b� th� inhibitory �ff�ct of
481 flavonoids on auxin transport, as r�port�d in Arabidopsis thaliana (Brown �t al., 2001). To t�st
482 this hypoth�sis it would b� int�r�sting to coll�ct ph�notypic data on th� roots of tr��s of th� po 
483 pulations und�r study. This is consist�nt with our r�sults sinc� CHI is on� of th� first k�y �n 
484 zym�s of th� flavonoid pathway (Dar� �t al., 2020). HCT is a k�y �nzym� of th� lignin pathway,
485 which is w�ll docum�nt�d and consists of a m�tabolic grid that modifi�s ph�nylalanin� in multipl�
486 st�ps to ultimat�ly produc� th� monolignols p coumaryl, conif�ryl, and sinapyl alcohols. In a pr� 
487 vious study, scr��ning a wid� div�rsity of populations and focusing on th� lignin biosynth�sis pa 
488 thway mad� it possibl� to id�ntify common and rar� functional variants in s�v�ral g�n�s (Marroni
489 �t al., 2011), including a natural d�f�ctiv� all�l� for HCT (Vanholm� �t al., 2013). How�v�r, no
490 �ff�ct on growth could b� d�t�ct�d in this work.  
491 Wh�n looking at th� loci div�rsity at th� population l�v�l w� found a strong diff�r�ntiation, far
492 abov� th� g�nom� wid� l�v�l (Fig. 4). Such a diff�r�ntiation is thus mor� lik�ly to r�sult from dif 
493 f�r�ntial s�l�ction than g�n�tic drift. Of particular int�r�st, th� diff�r�ntiation across natural popu 
494 lations was also found for CHI �xpr�ssion and circumf�r�nc� (Fig. 4), and w� could show that
495 th� top SNP contribut�d mainly to th� b�tw��n population compon�nt of g�n�tic variation for
496 growth (Fig. 3). As a r�sult, highly significant corr�lations w�r� found b�tw��n all�l� fr�qu�nci�s,
497 g�n� �xpr�ssion, and ph�notyp� at th� population l�v�l (Fig. 5). Wh�n looking at th� r�partition
498 of all�l�s on a map r�pr�s�nting th� g�ographic origin of th� populations, a cl�ar North East v�r 
499 sus South W�st diff�r�ntiation app�ars. Such a t�nd�ncy was confirm�d by th� significant cor 
500 r�lation found b�tw��n latitud� of origin and all�l� fr�qu�nci�s (Fig. S8a). On� could thus hypo 
501 th�siz� that th� diff�r�ntiation could b� r�lat�d to climatic diff�r�nc�s across W�st�rn Europ�,
502 which was confirm�d by th� significant corr�lation d�t�ct�d b�tw��n all�lic fr�qu�nci�s and a
503 t�mp�ratur� proxy of th� climat� of origin (Fig. S8b). If w� go back to th� ph�notypic data across
504 populations, it’s worth noting that th� south�rn populations with th� alt�rnat� all�l� fix�d display a
505 low�r growth and high�r wood d�nsity. Th�s� data support th� id�a that south�rn populations
506 ar� growing slowly as an adaptation to high summ�r t�mp�ratur�s, which ultimat�ly und�rlin�s
507 th� adaptiv� r�l�vanc� of th� locus r�port�d h�r�.
508 This work str�ngth�ns th� int�r�st in combining transcriptomics with g�nomics data across
509 larg� natural populations to unrav�l locus and g�n�s involv�d in k�y adaptiv� proc�ss�s such as
510 th� trad� off b�tw��n growth and wood formation. Such r�sults provid� som� guidanc� to br��d
511 futur� vari�ti�s of tr��s with improv�d �ffici�ncy to stor� carbon.
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