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Abstract  19 

Unicellular green algae of the genus Coccomyxa are recognized for their worldwide 20 

distribution and ecological versatility. Most species described to date live in close association 21 

with various host species, such as in lichen associations. However, little is known about the 22 

molecular mechanisms that drive such symbiotic lifestyles. We generated a high-quality 23 

genome assembly for the lichen photobiont Coccomyxa viridis SAG 216-4 (formerly C. 24 

mucigena). Using long-read PacBio HiFi and Oxford Nanopore Technologies in combination 25 

with chromatin conformation capture (Hi-C) sequencing, we assembled the genome into 21 26 

scaffolds with a total length of 50.9 Mb, an N50 of 2.7 Mb and a BUSCO score of 98.6%. While 27 

19 scaffolds represent full-length nuclear chromosomes, two additional scaffolds represent 28 

the mitochondrial and plastid genomes. Transcriptome-guided gene annotation resulted in the 29 

identification of 13,557 protein-coding genes, of which 68% have annotated PFAM domains 30 

and 962 are predicted to be secreted.  31 

 32 
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Introduction 37 

Green algae are photosynthesizing eukaryotic organisms that differ greatly in terms of 38 

morphology and colonize a large variety of aquatic and terrestrial habitats. Phylogenetically, 39 

green algae form a paraphyletic group that has recently been proposed to comprise three 40 

lineages including the Prasinodermophyta in addition to the Chlorophyta and Streptophyta (Li 41 

et al., 2020). This new phylum diverged before the split of the Chlorophyta and Streptophyta 42 

that occurred between 1,000 and 700 million years ago (Morris et al., 2018). While the 43 

streptophyte lineage encompasses charophyte green algae as well as land plants, the 44 

chlorophyte lineage consists of 7 prasinophyte classes, which gave rise to 4 phycoplast-45 

containing core chlorophyte classes (Chlorodendrophyceae, Trebouxiophyceae, 46 

Ulvophyceae, Chlorophyceae) with one independent sister class (Pedinophyceae) (Leliaert et 47 

al., 2012; Marin, 2012). 48 

The Coccomyxa genus is represented by coccoid unicellular green algae that belong 49 

to the class of Trebouxiophyceae. Morphologically, Coccomyxa spp. are characterized by 50 

irregular elliptical to globular cells that range from 6–14 x 3–6 μm in size, with a single parietal 51 

chloroplast lacking pyrenoids and the absence of flagellate stages (Schmidle, 1901). Members 52 

of this genus are found in freshwater, marine, and various terrestrial habitats where they occur 53 

free-living or in symbioses with diverse hosts (Darienko et al., 2015; Gustavs et al., 2017; 54 

Malavasi et al., 2016). Several Coccomyxa species establish stable, mutualistic associations 55 

with fungi that result in the formation of complex three-dimensional architectures, known as 56 

lichens (Faluaburu et al., 2019; Gustavs et al., 2017; Jaag, 1933; Yahr et al., 2015; Zoller and 57 

Lutzoni, 2003). Others associate with vascular plants or lichens as endo- or epiphytes, 58 

respectively (Cao et al., 2018a; Cao et al., 2018b; Tagirdzhanova et al., 2023; Trémouillaux-59 

Guiller et al., 2002), and frequently occur on the bark of trees (Kulichovà et al., 2014; Štifterovà 60 

and Neustupa, 2015) where they may interact with other microbes. One novel species was 61 

recently found in association with carnivorous plants, even though the nature of this 62 

relationship remains unclear (Sciuto et al., 2019). Besides, Coccomyxa also establishes 63 

parasitic interactions with different mollusk species affecting their filtration ability and 64 

reproduction (Gray et al., 1999; Sokolnikova et al., 2016; Sokolnikova et al., 2022; Vaschenko 65 

et al., 2013).  66 

Despite this ecological versatility, little is known about the molecular mechanisms that 67 

determine the various symbiotic lifestyles in Coccomyxa. One short read-based genome is 68 

available for C. subellipsoidea C-169 that was isolated on Antarctica where it occurred on 69 

dried algal peat (Blanc et al., 2012), whereas another high-quality genome has recently been 70 

made available for a non-symbiotic strain of C. viridis that was isolated from a lichen thallus 71 

(Tagirdzhanova et al., 2023). For Coccomyxa sp. Obi, LA000219 and SUA001 chromosome-72 
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, scaffold- and contig-level assemblies are available on NCBI, respectively, as well as two 73 

metagenome-assembled genomes of C. subellipsoidea. To facilitate the study of Coccomyxa 74 

symbiont-associated traits and their evolutionary origin, we here present the generation of a 75 

high-quality chromosome-scale assembly of the phycobiont C. mucigena SAG 216-4 using 76 

long-read PacBio HiFi and Oxford Nanopore Technology (ONT) combined with Hi-C and RNA 77 

sequencing. Recent SSU and ITS rDNA sequencing-based re-evaluations of the Coccomyxa 78 

phylogeny placed the SAG 216-4 isolate in the clade of C. viridis (Darienko et al., 2015; 79 

Malavasi et al., 2016). Hence, this isolate will be referred to as C. viridis here and data have 80 

been deposited under the corresponding Taxonomy ID.  81 

 82 

Materials & Methods 83 

Sample information 84 

Coccomyxa viridis (formerly Coccomyxa mucigena) SAG 216-4 was ordered from the Culture 85 

Collection of Algae at the Georg-August-University Göttingen (Sammlung von Algenkulturen 86 

der Universität Göttingen, international acronym SAG), Germany. The stock culture was 87 

reactivated in liquid modified Waris-H growth medium (McFadden and Melkonian, 1986) with 88 

soil extract and 3x vitamins (0.15 nM vitamin B12, 4.1 nM biotin, 0.3 M thiamine-HCl, 0.8 nM 89 

niacinamide), and maintained through regular medium replacement. Cultures were grown at 90 

 15 μmol photons m-2 s-1 (fluorescent light tubes: L36W/640i energy saver cool white and 91 

L58W/956 BioLux, Osram, Munich, Germany) in a 14/10 h light/dark cycle at 20°C.  92 

 93 

DNA and RNA extraction  94 

Cells of a 7-week-old C. viridis culture were harvested over 0.8 m cellulose nitrate filters 95 

(Sartorius, Göttingen, Germany) using a vacuum pump. Material was collected with a spatula, 96 

snap-frozen and ground in liquid nitrogen using mortar and pestle. The ground material was 97 

used for genomic DNA extraction with the RSC Plant DNA Kit (Promega, Madison, WI, USA) 98 

using the Maxwell RSC device according to manufacturer’s instructions. To prevent shearing 99 

of long DNA fragments, centrifugation was carried out at 10,000 g during sample preparation. 100 

Following DNA extraction, DNA fragments <10,000 bp were removed using the SRE XS kit 101 

(Circulomics, Baltimore, MD, USA) according to manufacturer’s instructions. DNA quantity and 102 

quality were assessed using the Nanodrop 2000 spectrometer and Qubit 4 fluorometer with 103 

the dsDNA BR assay kit (Invitrogen, Carlsbad, CA, USA), and integrity was confirmed by gel 104 

electrophoresis. High-molecular weight DNA was stored at 4°C. 105 

For total RNA extraction, algal cells were collected from a dense nine-day-old culture 106 

and ground in liquid nitrogen using mortar and pestle. RNA was extracted with the Maxwell 107 

RSC Plant RNA kit (Promega, Madison, WI, USA) using the Maxwell RSC device according 108 
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to manufacturer’s instructions. RNA quality and quantity was determined using the Nanodrop 109 

2000 and stored at -80°C. 110 

 111 

Pacific Biosciences High-Fidelity (PacBio HiFi) sequencing 112 

HiFi libraries were prepared with the Express 2.0 Template kit (Pacific Biosciences, Menlo 113 

Park, CA, USA) and sequenced on a Sequel II/Sequel IIe instrument with 30h movie time. HiFi 114 

reads were generated using SMRT Link (v10; (Pacific Biosciences, Menlo Park, CA, USA) 115 

with default parameters. 116 

 117 

Oxford Nanopore Technologies (ONT) sequencing  118 

Library preparation with the Rapid Sequencing Kit (SQK-626 RAD004) was performed with 119 

~400 ng HMW DNA according to manufacturer’s instructions (Oxford Nanopore Technologies, 120 

Oxford, UK). The sample was loaded onto an R9.4.1 flow cell in a minION Mk1B device 121 

(Oxford Nanopore Technologies, Oxford, UK), which was run for 24 h. Subsequent base 122 

calling was performed using Guppy (version 630 3.1.3; Oxford Nanopore Technologies, 123 

Oxford, UK). Adapter sequences were removed using Porechop (version 0.2.4 with default 124 

settings) (Wick, 2018), and the reads were self-corrected and trimmed using Canu (version 125 

1.8) (Koren et al., 2017). 126 

 127 

Chromosome conformation capture (Hi-C) and sequencing 128 

C. viridis cells were cross-linked in 3% formaldehyde for 1 hour at room temperature. The 129 

reaction was quenched with glycine at a final concentration of 250 mM. Cells were collected 130 

by centrifugation at 16,000 g for 10 min. Pellets were flash-frozen in liquid nitrogen and ground 131 

using mortar and pestle. Hi-C libraries were prepared using the Arima-HiC+ kit (Arima 132 

Genomics, Carlsbad, CA, USA) according to manufacturer’s instructions, and subsequently 133 

paired-end (2x150 bp) sequenced on a NovaSeq 6000 instrument (Illumina, San Diego, CA, 134 

USA). 135 

 136 

RNA sequencing 137 

Library preparation for full-length mRNASeq was performed using the NEB Ultra II Directional 138 

RNA Library Prep with NEBNext Poly(A) mRNA Magenetic Isolation Module and 500 ng total 139 

RNA as starting material, except for W-RNA Lplaty, where library prep was based on 100 ng 140 

total RNA as starting material. Sequencing was performed on an Illumina NovaSeq 6000 141 

device with 2x150 bp paired-end sequencing protocol and >50 M reads per sample. 142 

 143 

Genome assembly 144 
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PacBio HiFi reads were assembled using Raven (v1.8.1) (Vaser and Šikić, 2021) with default 145 

settings. Hi-C reads were mapped onto this assembly with Juicer (v2.0) using the “assembly” 146 

option to skip the post-processing steps and generate the merged_nodups.txt file (Durand et 147 

al., 2016b). For the juicer pipeline, restriction site maps were generated using the DpnII 148 

(GATC) and HinfI (GANTC) restriction site profile and the assembly was indexed with BWA 149 

index (v0.7.17-r1188) (Li and Durbin, 2009), and used to polish the assembly using 3d-dna 150 

(v180922) (Dudchenko et al., 2017). Afterwards, Juicebox (v1.11.08) was used to manually 151 

curate the genome assembly by splitting contigs and rearranging them according to the Hi-C 152 

pattern (Durand et al., 2016a). Contigs were merged to scaffolds according to the Hi-C map 153 

and Ns were introduced between contigs within scaffolds, gaps between contigs were 154 

removed and contigs were merged. Subsequently, ONT reads were mapped to the assembly 155 

using Minimap2 (v2.24-r1122) and Samtools (v1.10) and mapped reads were visualized in 156 

Integrative Genome Viewer (v2.11.2) (Danecek et al., 2021; Li, 2021; Robinson et al., 2011). 157 

Whenever gaps between contigs were spanned by at least five reads with a mapping quality 158 

of 30, the contigs were fused in the assembly.  159 

Potential telomeres were identified using tapestry (v1.0.0) with “AACCCT” as telomere 160 

sequence (Davey et al., 2020). To check for potential contaminations, Blobtools (v1.1.1) and 161 

BLAST (v2.13.0+) were used to create a Blobplot including taxonomic annotation at genus 162 

level (Camacho et al., 2009; Laetsch and Blaxter, 2017). To check completeness of the 163 

assembly and retrieve ploidy information, kat comp from the Kmer Analysis Toolkit (v2.4.2) 164 

was used, and results were visualized using the kat plot spectra-cn function with the -x 800 165 

option to extend the x-axis (Mapleson et al., 2016). Genome synteny to the closest sequenced 166 

relative C. subellipsoidea C-169 was determined using Mummer3 (Blanc et al., 2012; Kurtz et 167 

al., 2004). In detail, the two assemblies were first aligned using Nucmer, followed by a filtering 168 

step with Delta-filter using the many-to-many option (-m). Finally, the alignment was visualized 169 

with Mummerplot.  170 

 171 

Annotation 172 

To annotate repetitive elements in the nuclear genome, a database of simple repeats was 173 

created with RepeatModeler (v2.0.3) that was expanded with transposable elements (TE) from 174 

the TransposonUltimate resonaTE (v1.0) pipeline (Flynn et al., 2020; Riehl et al., 2022). This 175 

pipeline uses multiple tools for TE prediction and combines the prediction output. For the 176 

prediction of TEs in Coccomyxa viridis helitronScanner, ltrHarvest, mitefind, mitetracker, 177 

RepeatModeler, RepeatMasker, sinefind, tirvish, transposonPSI and NCBICDD1000 were 178 

used within TransposonUltimate resonaTE and TEs that were predicted by at least two tools 179 

were added to the database. TEclass (v2.1.3) was used for classification (Abrusán et al., 180 

2009). To softmask the genome and obtain statistics on the total TE and repetitive element 181 
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content in the genome, RepeatMasker (v4.1.2-p1)(Smit et al., 2012) was used with excln 182 

option to exclude Ns in the masking.  183 

 Gene annotation in the nuclear genome was performed making use of RNA 184 

sequencing data. To this end, the genome was indexed, and reads were mapped with HiSat2 185 

(v2.2.1) using default settings (Kim et al., 2019). Afterwards, BRAKER1 (v2.1.6) was used for 186 

transcriptome-guided gene prediction based on the RNA sequencing data with default settings 187 

(Hoff et al., 2016). To generate protein and coding sequence files the Braker output was 188 

transformed with Gffread (v0.12.7) (Pertea and Pertea, 2020). PFAM domain annotation was 189 

performed with InterProScan (v5.61) (Paysan-Lafosse et al., 2023). To estimate the number 190 

of secreted proteins, SignalP (v6.0) was run in the slow-sequential mode on the annotated 191 

proteins (Teufel et al., 2022). Finally, BUSCO (v5.3.2) was run with the Chlorophyta database 192 

(chlorophyta_odb10) to estimate the completeness of the gene annotation (Manni et al., 193 

2021). The circos plot visualization of the annotation was created with R (v4.2.0) and Circilize 194 

(v0.4.14) (Gu et al., 2014). All software and tools used for the genome assembly and 195 

annotation are summarized in Table S1. 196 

Organelle genomes were annotated separately. Scaffolds were identified as organelle 197 

genomes based on their lower GC content and smaller size. The mitochondrial genome was 198 

annotated using MFannot (Lang et al., 2023) as well as GeSeq (Tillich et al., 2017) and the 199 

annotation was combined within the GeSeq platform. The plastid genome was annotated 200 

using GeSeq alone. The annotations were visualized using the OGDraw webserver (Greiner 201 

et al., 2019). 202 

 203 

 204 

Results 205 

The version 1 genome of C. viridis was assembled from 32.2 Gbp of PacBio HiFi reads with 206 

a mean read length of 15 kb, 0.95 Gbp Nanopore reads with a mean read length of 8.8 kb and 207 

15 million pairs of Hi-C seq data. The PacBio HiFi reads were first assembled using Raven 208 

(Vaser and Šikić, 2021), yielding 27 contigs. These contigs were scaffolded and manually 209 

curated using Hi-C data (Dudchenko et al., 2017; Durand et al., 2016a; Durand et al., 2016b; 210 

Li and Durbin, 2009). To close the remaining gaps between contigs within scaffolds, ONT 211 

reads were mapped onto the assembly (Danecek et al., 2021; Li, 2021) and gaps that were 212 

spanned by at least 5 ONT reads with a mapping quality >30 were manually closed, finally 213 

resulting in 21 scaffolds consisting of 26 contigs with a total length of 50.9 Mb and an N50 of 214 

2.7 Mb (Figure 1, Table 1). Using Tapestry (Davey et al., 2020), telomeric regions 215 

(AACCCTn) were identified at both ends of nine of the 21 scaffolds (5 repeats) (Figure 1a), 216 

suggesting that these represent full-length chromosomes, which was confirmed by Hi-C 217 



  8 

analysis (Figure 1b). Additionally, the Hi-C contact map indicated centromeres for some of the 218 

chromosomes. However, the determination of exact centromere locations on all chromosomes 219 

will require ChIP-seq analysis and CenH3 mapping. While Tapestry detected telomeric 220 

sequences at only one end of eight other scaffolds and none for scaffold 18 and 19, the Hi-C 221 

map points towards the presence of telomeric repeats at both ends of all scaffolds 1-19 (Figure 222 

1b), suggesting that the v1 assembly contains 19 full-length chromosomes that compose the 223 

nuclear genome. Scaffolds 20 and 21 were considerably shorter with 162 kb and 70 kb and 224 

displayed a markedly lower GC content at 41-42% (Figure 1a), suggesting that these scaffolds 225 

represent the chloroplast and mitochondrial genomes, respectively. BLAST analyses 226 

confirmed the presence of plastid and mitochondrial genes on the respective scaffolds, and 227 

the overall scaffold lengths corresponded with the sizes of the plastid and mitochondrial 228 

genomes of Coccomyxa subellipsoidea C-169 with 175 kb and 65 kb, respectively (Blanc et 229 

al., 2012). Full annotation of scaffolds 20 and 21 showed that they indeed represent 230 

chloroplast and mitochondrial genomes, respectively (Figure 2).  231 

To rule out the presence of contaminants, the assembly and PacBio HiFi raw reads 232 

were used to produce a Blobplot (Camacho et al., 2009; Laetsch and Blaxter, 2017), which 233 

indicates that 98.76% of the reads match only the Coccomyxa genus (Figure 3) and, 234 

consequently, that the original sample was free of contaminating organisms. Finally, a KAT 235 

analysis showed a single peak of k-mer multiplicity based on HiFi reads that were represented 236 

once in the assembly (Figure 4) (Mapleson et al., 2016), indicative of a high-quality, haploid 237 

genome.  238 

 To annotate the nuclear genome, we first assessed the presence of repetitive 239 

elements. In total, we found 8.9% of the genome to be repetitive (Table 2), comparable to the 240 

7.2% of repetitive sequences found in the genome of C. supellipsoidea C-169 (Blanc et al., 241 

2012). These 8.9% repetitive elements were annotated as either simple repeats (2.3%) or 242 

transposable elements (6.6%). Of the transposable elements, 36% were annotated as 243 

retrotransposons and 64% as DNA transposons. The distribution of the repetitive elements 244 

was even across the genome with only a few repeat-rich regions (Figure 5). Next, we aimed 245 

to produce a high-quality genome annotation using RNA sequencing data. In total 13,557 246 

genes were annotated with an average length of 3.1 kb (Table 2). The amount of alternative 247 

splicing in the genome is predicted to be very low, given the average of one transcript per 248 

gene model. To confirm the actual amount of alternative splicing, however, further analyses 249 

will be required. Of the 13,557 genes, 68% have annotated PFAM domains and 962 are 250 

predicted to carry a signal peptide for secretion. A total of 1,489 (98.6 %) complete gene 251 

models among 1,519 conserved Benchmarking Universal Single-Copy Orthologs (BUSCO) 252 

(Manni et al., 2021) in the chlorophyta_odb10 database were identified (Table 2), suggesting 253 

a highly complete genome annotation.  254 
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Until recently, the taxonomic classification and definition of Coccomyxa species was 255 

based on environmentally variable morphological and cytological characteristics. This 256 

classification was reviewed based on the phylogenetic analyses of nuclear SSU and ITS rDNA 257 

sequences, which resulted in the definition of 27 currently recognized Coccomyxa species 258 

(Darienko et al., 2015; Malavasi et al., 2016). Dot plot analysis of the high-quality genome 259 

assembly of C. viridis SAG216-4 with the assembly of the most closely related sequenced 260 

relative C. subellipsoidea C-169 revealed a lack of synteny since the few identified orthologous 261 

sequences were < 1 kb and, therefore, do not represent full-length genes (Figure 6a, Table 262 

2). This lack of synteny was no technical artifact since the C. viridis assembly could be fully 263 

aligned to itself (Figure 6b), and BLAST analyses with five out of six non-identical ITS 264 

sequences identified in the C. viridis SAG 216-4 assembly confirmed its species identity. A 265 

comparison of the assembly of C. subellipsoidea C-169 to that of Chlorella variabilis 266 

(Chlorophyte, Trebouxiophyceae) has previously identified few syntenic regions which 267 

displayed poor gene collinearity (Blanc et al., 2012). Future studies will help to clarify whether 268 

the absence of synteny between C. viridis and C. subellipsoidea is due to the quality of the 269 

available assemblies or whether it has biological implications. 270 

 271 

Data availability 272 

Data for C. viridis SAG 216-4 with the ToLID ucCocViri1 is available via the European 273 

Nucleotide Archive (ENA) under the study accession number PRJNA1054215. Fastqc reports 274 

of raw data can be found in (Kraege et al., 2023). 275 
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Figure legends 437 

Figure 1. Genome assembly of Coccomyxa viridis SAG 216-4. (a) An overview of the C. 438 

viridis genome assembly depicts chromosome-scale scaffolds. Green bars indicate scaffold 439 

sizes and red bars represent telomeres. Variations in color intensities correlate with read 440 

coverage. Read coverage per scaffold is determined by mapping PacBio HiFi reads onto the 441 

assembly. Scaffolds 20 and 21 were identified as chloroplast and mitochondrial genomes 442 

based on size and low GC contents, and BLAST analyses. (b) Hi-C contact map showing 443 

interaction frequencies between regions in the nuclear genome of Coccomyxa viridis. 444 

Scaffolds are framed by blue lines while contigs within scaffolds are depicted in green. 445 

  446 

Figure 2 Scaffolds 20 and 21 represent the plastid and mitochondrial genomes of C. 447 

viridis SAG 216-4. Gene maps of the chloroplast (a) and mitochondrial (b) genomes. The 448 

inner circles indicate the GC content and mapped genes are shown on the outer circles. Genes 449 

that are transcribed clockwise are placed inside the outer circles, and genes that are 450 

transcribed counterclockwise at the outside of the outer circles. 451 

 452 

Figure 3. Taxonomic annotation indicates absence of contaminations in the genome 453 

assembly. (b) Taxon-annotated GC coverage scatter plot (Blobplot) of the contigs from the 454 

genome assembly shows that all scaffolds are taxon-annotated as Coccomyxa and all 455 

scaffolds that belong to the nuclear genome have similar GC contents (~54%). The GC 456 

content of the mitochondrial and plastid genomes are considerably lower (~41%). (b) In total 457 

98.76% of the reads can be mapped onto the assembly and are therefore classified as 458 

Coccomyxa reads.   459 

  460 

Figure 4. The Coccomyxa viridis SAG 216-4 genome is haploid. The KAT specra-cn plot 461 

depicts the 27-mer multiplicity of the PacBio HiFi reads against the genome assembly. Black 462 

areas under the peaks represent k-mers present in the reads but absent from the assembly, 463 

colored peaks indicate k-mers that are present once to multiple times in the assembly. The 464 

single red peak in the KAT specra-cn plot suggests that Coccomyxa viridis has a haploid 465 

genome, while the black peak at low multiplicity shows that the assembly is highly complete 466 

and that all reads are represented in the assembly. 467 

  468 

Figure 5. Circos plot summarizing the nuclear genome annotation of Coccomyxa viridis 469 

SAG 216-4. From outside to inside the tracks display: GC content (over 1-kb windows), gene 470 

density (blue) and repetitive element density (red).  471 

  472 
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Figure 6. No synteny detected between related Coccomyxa species. (a) Dot plot of 473 

orthologous sequences in the genome assemblies of C. viridis SAG 216-4 and C. 474 

subellipsoidea C-169. Violet and blue dots represent orthologous sequences on same and 475 

opposite strands, respectively. Dot sizes does not correlate with the length of the sequences 476 

they represent, which were all < 1 kb. The width of each box corresponds to the length (bp) of 477 

the respective scaffold. (b) Dot plot of the genome assembly of C. viridis SAG216-4 against 478 

itself. 479 

 480 

  481 
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 482 

Figure 1. Genome assembly of Coccomyxa viridis SAG 216-4. (a) An overview of the C. 483 

viridis genome assembly depicts chromosome-scale scaffolds. Green bars indicate scaffold 484 

sizes and red bars represent telomeres. Variations in color intensities correlate with read 485 
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coverage. Read coverage per scaffold is determined by mapping PacBio HiFi reads onto the 486 

assembly. Scaffolds 20 and 21 were identified as chloroplast and mitochondrial genomes 487 

based on size and low GC contents, and BLAST analyses. (b) Hi-C contact map showing 488 

interaction frequencies between regions in the nuclear genome of Coccomyxa viridis. 489 

Scaffolds are framed by blue lines while contigs within scaffolds are depicted in green. 490 

 491 
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 493 

Figure 2 Scaffolds 20 and 21 represent the plastid and mitochondrial genomes of C. 494 

viridis SAG 216-4. Gene maps of the chloroplast (a) and mitochondrial (b) genomes. The 495 

inner circles indicate the GC content and mapped genes are shown on the outer circles. Genes 496 

that are transcribed clockwise are placed inside the outer circles, and genes that are 497 

transcribed counterclockwise at the outside of the outer circles. 498 

  499 



  19 

 500 

Figure 3. Taxonomic annotation indicates absence of contaminations in the genome 501 

assembly. (b) Taxon-annotated GC coverage scatter plot (Blobplot) of the contigs from the 502 

genome assembly shows that all scaffolds are taxon-annotated as Coccomyxa and all 503 

scaffolds that belong to the nuclear genome (N) have similar GC contents (~54%). The GC 504 
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content of the mitochondrial (M) and plastid (P) genomes are considerably lower (~41%). (b) 505 

In total 98.76% of the reads can be mapped onto the assembly and are therefore classified 506 

as Coccomyxa reads.   507 

 508 
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 510 

Figure 4. The Coccomyxa viridis SAG 216-4 nuclear genome is haploid. The KAT specra-511 

cn plot depicts the 27-mer multiplicity of the PacBio HiFi reads against the nuclear genome 512 

assembly. Black areas under the peaks represent k-mers present in the reads but absent from 513 

the assembly, colored peaks indicate k-mers that are present once to multiple times in the 514 

assembly. The single red peak in the KAT specra-cn plot suggests that Coccomyxa viridis has 515 

a haploid genome, while the black peak at low multiplicity shows that the assembly is highly 516 

complete and that all reads are represented in the assembly. 517 

 518 
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 520 

Figure 5. Circos plot summarizing the nuclear genome annotation of Coccomyxa viridis 521 

SAG 216-4. From outside to inside the tracks display: GC content (over 1-kb windows), gene 522 

density (blue) and repetitive element density (red).  523 

 524 

 525 
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 527 

Figure 6. No synteny detected between related Coccomyxa species. (a) Dot plot of 528 

orthologous sequences in the genome assemblies of C. viridis SAG 216-4 and C. 529 

subellipsoidea C-169. Violet and blue dots represent orthologous sequences on same and 530 

opposite strands, respectively. Dot sizes does not correlate with the length of the sequences 531 

they represent, which were all < 1 kb. The width of each box corresponds to the length (bp) of 532 

the respective scaffold. (b) Dot plot of the genome assembly of C. viridis SAG216-4 against 533 

itself. 534 
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Table 1. Genome features of C. viridis SAG 216-4 including the mitochondrial and plastid genomes. 537 

Assembly ID C. viridis SAG 216-4 genomes 

Total length (bp) 50,911,578 

No. of contigs  27 

No. of scaffolds 21 

Longest scaffold (bp) 4,477,725 

N50 (bp) 2,669,017 

L50 8 

GC content (%) 54.5 

 538 
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Table 2 Annotation features of the C. viridis SAG 216-4 nuclear genome. 540 

Genome annotation 

Repeat content (%) 

Retrotransposons 

DNA transposons 

Simple repeats 

8.85 

2.4 

4.2 

2.25 

No. gene models 13,557 

Average gene length (bp) 3146 

No. exons 122,978 

Average no. exons per gene model 9 

Average exon length (bp) 158 

No. transcripts 14,024 

Average no. transcripts/gene model 1 

No. gene models <200 bp length 0 

No. proteins with 1 PFAM domain 9205 

No. proteins with signal peptide 962 

BUSCO (chlorophyta_odb10) C: 98.6% S: 82.5%, D: 16.1%, F: 0.1%, M: 1.3%, N: 1519 

 541 
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Table S1. Summary of bioinformatics tools used for genome assembly and annotation. 543 

Assembly Annotation 

Tool  Version Tool  Version 

Raven v1.8.1 RepeatModeler v2.0.3 

Juicer v2.0 TransposonUltimate v1.0 

BWA v0.7.17-r1188 TEclass v2.1.3 

3d-dna v180922 RepeatMasker v4.1.2-p1 

Juicebox v1.11.08 HiSat2 v2.2.1 

Minimap2 v2.24-r1122 Braker v2.1.6 

Samtools v1.10 Gffread v0.12.7 

Integrative Genome Viewer v2.11.2 SignalP v6.0 

Tapestry v1.0.0 BUSCO v5.3.2 

Blobtools v1.1.1 R v4.2.0 

BLAST 2.13.0+ Circilize v0.4.14 

Kmer Analysis Toolkit V2.4.2 InterProScan v5.61 

Mummer C3.23   
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