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Abstract 7

The past decade has seen an eruption of interest in profiling microbiomes through DNA 8

sequencing. The resulting investigations have revealed myriad insights and attracted an influx of 9

researchers to the research area. Many newcomers are in need of primers on the fundamentals 10

of microbiome sequencing data types and the methods used to analyze them. Accordingly, here 11

we aim to provide a detailed, but accessible, introduction to these topics. We first present 12

the background on marker-gene and shotgun metagenomics sequencing and then discuss unique 13

characteristics of microbiome data in general. We highlight several important caveats resulting 14

from these characteristics that should be appreciated when analyzing these data. We then 15

introduce the many-faceted concept of microbial functions and several controversies in this area. 16

One controversy in particular is regarding whether metagenome prediction methods (i.e. based 17

on marker gene sequences) are sufficiently accurate to ensure reliable biological inferences. We 18

next highlight several underappreciated developments regarding the integration of taxonomic and 19

functional data types. This is a highly pertinent topic because although these data types are 20

inherently connected, they are often analyzed independently and primarily only linked anecdotally 21

in the literature. We close by providing our perspective on this topic in addition to the issue 22

of reproducibility in microbiome research, which are both crucial data analysis challenges facing 23

microbiome researchers. 24

1

mailto:morgan.langille@dal.ca


Background25

Microbial communities encompass most of the ge-26

netic and species-level diversity on Earth. These27

communities are commonly characterized through28

DNA sequencing, which can be used to identify the29

presence and relative abundance of microbes in a30

community. These communities, including both the31

microbes, their constituent genes, and metabolites,32

are referred to as microbiomes. Due to technological33

improvements and the reduced cost of sequencing, the34

number of sequenced microbiomes has substantially35

grown in recent years. For instance, in 2017 the Earth36

Microbiome Project published a meta-analysis of37

23,828 sequencing samples from all seven continents38

(Thompson et al. 2017). These data represented39

109 environmental groupings and 21 major biomes,40

such as animal secretions, saline water, and soil. A41

key goal of microbial ecology research is to robustly42

analyze and correctly interpret these and other such43

microbial profiles.44

But is DNA sequencing the best method for char-45

acterizing microbial communities? It is commonly46

observed that microbiome research would benefit47

from more emphasis on culturing, which enables indi-48

vidual microbes to be isolated and precisely studied49

in the lab. Traditionally, microbial communities50

were difficult to study by culturing alone because51

the vast majority of environmental microbes, partic-52

ularly bacteria, could not be grown under standard53

culturing conditions (Staley and Konopka 1985).54

This issue remains unresolved even after gradual55

improvements to standard culturing conditions; a56

recent evaluation of six major environments identified57

only 34.9% of bacteria as culturable under standard58

conditions (Martiny 2019). However, modified cul-59

turing conditions can largely resolve this problem.60

By systematically applying 66 different conditions it61

was demonstrated that 95% of bacterial species in62

human stool samples could be grown in the lab (Lau63

et al. 2016). Therefore, it is no longer true for human64

stool samples, and likely other environments as well,65

that the majority of constituent bacteria cannot be66

cultured.67

Despite these advances, a clear remaining advan-68

tage of DNA sequencing is that it enables microbial69

communities to be characterized in place, which70

theoretically enables the exact community relative71

abundances to be profiled. In practice, biases during72

sample collection and sequencing library preparation73

can perturb microbial relative abundances (Jones et74

al. 2015; Bukin et al. 2019; Watson et al. 2019).75

But nonetheless, DNA sequencing provides a more76

accurate view of the relative abundances of the com-77

munity members than would be possible from cultur- 78

ing alone. For this reason, DNA sequencing remains 79

the predominant method for characterizing microbial 80

communities, although it is well-complemented by 81

culturing (Lau et al. 2016). 82

DNA sequencing data is typically analyzed to 83

identify specific associations between individual fea- 84

tures (e.g. individual microbes) and sample groups of 85

interest. Most commonly, researchers are interested 86

in identifying associations between disease states and 87

the relative abundance of features. A similar goal 88

is often to investigate whether different measures of 89

diversity in the studied dataset are associated with 90

the sample groups. These measures of diversity 91

are divided into alpha and beta diversity (Goodrich 92

et al. 2014). Alpha diversity metrics refer to 93

within-sample measures, such as richness (i.e. the 94

number of taxa), and the Shannon diversity index 95

(or entropy), which incorporates both the abundance 96

and evenness of taxa within a sample (Jost 2006). 97

In contrast, beta diversity refers to metrics that 98

summarize variation between samples, which is most 99

often performed by metrics that take the presence 100

and abundance of features into account, such as 101

the Bray-Curtis dissimilarity metric (Goodrich et 102

al. 2014). Other microbiome-specific metrics have 103

also been developed, such as the weighted UniFrac 104

distance, which also takes the phylogenetic distance 105

between taxa into account (Lozupone and Knight 106

2005). There is often more statistical power to 107

detect overall differences based on alpha and beta 108

diversity metrics than to detect associations with 109

individual features, but diversity-level insights are 110

also less actionable (Shade 2017). 111

There are many sub-categories of DNA sequenc- 112

ing approaches for characterizing microbial commu- 113

nities. One key distinction is between approaches 114

that aim to characterize taxa (i.e. a group of 115

organisms) and those that characterize genes and 116

pathways, referred to as functions, that could be 117

active in the community. These data types are 118

referred to as taxonomic and functional microbiome 119

data, respectively. Biologically this dichotomy is 120

counter-intuitive; clearly genes are encoded in the 121

genomes of taxa. So why does this distinction exist? 122

The reason is entirely related to methodological 123

challenges. The most common and cost-effective 124

sequencing approach focuses on sequencing marker 125

genes. This method provides no direct information 126

on the genomes of sequenced microbes, and instead 127

is used to profile taxa. In contrast, shotgun metage- 128

nomics sequencing (MGS) provides information on 129

all DNA present in a sample. MGS data can be 130

used for analyzing both taxonomic and functional 131
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profiles. However, it is difficult to integrate the132

two data types, largely due to the complexity of133

microbial communities and the fragmented nature134

of DNA sequencing: it is relatively straight-forward135

to identify genes in MGS data but challenging to136

determine from which genomes they originated.137

Herein we introduce the key forms of these data138

types and highlight important caveats that should139

be considered when they are analyzed. We first140

cover the fundamentals of microbiome data analysis,141

starting with marker-gene sequencing, and then move142

to recently developed tools that could be leveraged to143

conduct joint analyses of taxonomic and functional144

data types. We conclude by highlighting two impor-145

tant challenges that must be addressed in microbiome146

data analysis.147

Marker-gene sequencing148

The earliest developed and most common form of mi-149

crobiome sequencing is marker-gene sequencing, also150

known as amplicon sequencing. Under this approach151

specific genes are PCR-amplified and then sequenced.152

There are two key requirements for robust marker153

genes. First, they must be encoded by all (or at least154

most) taxa of interest. Second, the observed sequence155

divergence between orthologs should be approxi-156

mately equal to the neutral mutation fixation rate157

multiplied by double the divergence time between or-158

thologs (Woese 1987). Note that the divergence time159

should be doubled because mutations could accumu-160

late in either lineage since the organisms diverged.161

Genes displaying this second requirement have been162

referred to as molecular chronometers. This term163

highlights the close link between these marker genes164

and the concept of the molecular clock (Zuckerkandl165

and Pauling 1965): given equal mutation rates and166

equal fixation rates for neutral mutations, the number167

of neutral substitutions between organisms is directly168

proportional to the evolutionary divergence between169

them.170

However, there are many reasons why a gene171

might be an unreliable molecular chronometer (Janda172

and Abbott 2007). One reason is that if a gene varies173

in function across taxa then contrasting selection174

pressures could result in different non-synonymous175

substitution rates (Wheeler et al. 2016). For176

instance, as previously observed (Woese 1987), the177

cytochrome complex gene is a useful molecular178

chronometer in eukaryotes, but suffers from draw-179

backs. This gene was shown to be useful for building180

early phylogenetic trees that represented both long181

evolutionary distances across eukaryotes and short182

distances between human populations (Fitch and 183

Margoliash 1967). However, within prokaryotes the 184

cytochrome complex systematically varies in size, 185

which is believed to be due to positive selection (Am- 186

bler et al. 1979). Because positive selection is likely 187

driving divergence between orthologous cytochrome 188

complexes, in at least some cases it would be an in- 189

valid molecular chronometer to study in prokaryotes. 190

Similarly, if a gene is sufficiently divergent between 191

organisms then it can be difficult to accurately align 192

residues. Misalignments lead to inaccurate estimates 193

of evolutionary divergence, which is particularly true 194

if the gene accumulates insertions and deletions. Such 195

highly divergent regions, particularly in areas under 196

no selective constraint, have been referred to as 197

“evolutionary stopwatches” (Woese 1987), because 198

they are useful only at short evolutionary distances. 199

Therefore, to select a robust marker gene one should 200

adhere in some ways to the Goldilocks principle: some 201

nucleotide conservation is needed, but not too much. 202

The 16 Svedberg (16S) ribosomal RNA (rRNA) 203

gene fits well with this principle. This gene features 204

highly conserved regions surrounding nine less con- 205

served regions (referred to as variable regions). It 206

is also encoded by all prokaryotes and represents 50 207

helical RNA regions encoded by approximately 1,500 208

base-pairs (Woese et al. 1980). This high number 209

of independent functional domains is valuable in a 210

marker gene (Woese 1987). This is because if there 211

are non-random substitutions within a single domain, 212

but substitutions in the majority of other domains 213

are driven by random processes, there would likely be 214

little effect on estimates of evolutionary divergence. 215

This gene also encodes a highly conserved function 216

across both prokaryotes and eukaryotes (where it is 217

called the 18S rRNA gene). The 16S rRNA molecule 218

is part of the 30S small subunit (SSU) of the ribo- 219

some, which helps initiate protein synthesis by bind- 220

ing the Shine-Dalgarno sequence in messenger RNA 221

(mRNA) to align the ribosome with the encoded start 222

codon. Many changes in the highly conserved region 223

of the 16S rRNA gene affect its binding affinity to the 224

ribosome and mRNA. The strong negative selection 225

acting against such substitutions makes these regions 226

valuable for detecting rare substitutions between 227

distant relatives, anchoring alignments of 16S rRNA 228

genes, and for primer design (Wang et al. 2013). 229

Since the 16S rRNA gene was identified as a useful 230

molecular chronometer, it has been the prime marker 231

gene used to develop phylogenetic models of the tree 232

of life. Most famously, an alignment of 16S (and 233

18S) rRNA gene sequences from across life lead to 234

distinguishing archaea, bacteria, and eukaryotes into 235

distinct domains (Woese and Fox 1977). In these 236
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early days, research focused on analyzing the rRNA237

sequences of isolated microbes. This was painstaking238

work, as illustrated by the prediction in 1987 that239

future research groups could plausibly sequence on240

the order of one hundred 16S rRNAs a year (Woese241

1987).242

Thirty-four years later, through next-generation243

sequencing technology, insufficient availability of se-244

quenced rRNA genes is no longer a common com-245

plaint. Databases such as SILVA contain enormous246

collections of sequenced SSU fragments; as of Au-247

gust 2020 SILVA contained 9,469,124 non-clustered,248

independent sequences (Quast et al. 2013). Software249

such as redbiom also enables unique 16S rRNA gene250

variants to be compiled from the growing number251

of 16S rRNA gene sequencing (hereafter referred to252

as 16S sequencing) studies (McDonald et al. 2019).253

These 16S datasets are produced to characterize254

and compare the relative abundances of prokaryotes255

across communities. However, despite the ubiquity256

of such datasets, they are non-trivial to analyze257

and interpret. There are numerous methodological258

reasons for this difficulty.259

First, due to sequencing length constraints, only260

certain 16S rRNA gene variable regions are typically261

amplified and sequenced. Each variable region has262

particular strengths and limitations (Chen et al.263

2019; Johnson et al. 2019). Along with our colleagues264

we have previously compared the biases between the265

amplified fragments from variable regions four and266

five and from regions six to eight (written as V4-V5267

and V6-V8, respectively) on a mock community from268

the Human Microbiome Project (HMP) (Comeau et269

al. 2017). We found the V4-V5 region overrepre-270

sented Firmicutes and Bacteroides while drastically271

underestimating Actinobacteria. In contrast, the272

V6-V8 region overrepresented Proteobacteria and273

underrepresented Bacteroides. These biases highlight274

that choice of variable region can depend on which275

taxa are of interest. For example, region V4-V5276

was recently shown to be superior to region V6-V8277

for identifying archaea in the North Atlantic Ocean278

(Willis et al. 2019). In this case the authors were279

particularly interested in archaeal diversity so the V4-280

V5 region was more appropriate.281

Typically, however, the taxonomic scope of inter-282

est and region biases in a particular environment are283

not clear and little or no rationale is given for the284

variable region selection. This is a problem, because285

analyses of the same communities with different286

variable regions can result in not only systematic287

biases in the raw data, but also in strikingly different288

biological interpretations. For example, key species289

that modulate human vaginal health are underrep-290

resented or missing in V1-V2 sequencing datasets, 291

such as Gardnerella vaginalis, Bifidobacterium bi- 292

fidum, and Chlamydia trachomatis (Graspeuntner et 293

al. 2018). Application of this region for profiling 294

vaginal samples, instead of the more appropriate 295

choice of the V3-V4 region, can result in entirely 296

missing associations between vaginal health and the 297

microbiome. Similarly, a comparison of the tick 298

microbiome based on six sequenced 16S rRNA gene 299

regions found a wide range of the number of prokary- 300

otic families and in the Shannon diversity index for 301

each individual tick (Sperling et al. 2017). The 302

problem of such biases in variable region selection 303

is beginning to recede as long-read technologies, such 304

as that developed by Pacific Biosciences of California 305

and Oxford Nanopore Technologies Limited, enable 306

full-length 16S sequencing (Callahan et al. 2019; 307

Johnson et al. 2019). However, it will remain an 308

important issue for the foreseeable future as long 309

as the microbiome is largely studied by short-read 310

sequencing. 311

Regardless of the sequenced region, most reads 312

originating from the same biological molecule will 313

differ due to sequencing errors. Raw reads are either 314

clustered based on sequence identity into operational 315

taxonomic units (OTUs) or alternatively errors are 316

corrected to produce amplicon sequence variants 317

(ASVs). OTUs are typically clustered at 97% identity 318

(Goodrich et al. 2014), which often results in merging 319

different species into a single OTU (Mysara et al. 320

2017). This issue has long plagued 16S rRNA gene- 321

based analyses. For instance, Bacillus globisporus 322

and Bacillus psychrophilus are problematic cases be- 323

cause their 16S genes share 99.5% sequence identity, 324

but are highly distinct at the genome level (Fox et al. 325

1992). 326

In contrast to clustering approaches, error- 327

correcting approaches, referred to as denoising meth- 328

ods, theoretically can correct raw reads sufficiently 329

well to produce exact biological molecules. Several 330

different denoising approaches have emerged recently. 331

DADA2 is the most sophisticated approach, which 332

generates a different parametric error model for every 333

input sequencing dataset (Callahan et al. 2016a). 334

The raw sequencing reads are then corrected to 335

generate ASVs based on this error model. Deblur 336

and UNOISE3 are two other denoising tools that are 337

based on rapidly clustering raw reads and using pre- 338

determined hard cut-offs related to the expected error 339

rates to generate ASVs. We and other colleagues 340

have evaluated the performance of these three tools 341

and open-reference OTU clustering (which combines 342

both de novo and reference-based clustering) and 343

found that all three denoising methods result in 344
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similar overall microbial communities (Nearing et al.345

2018). In contrast, we found that open-reference346

OTU clustering resulted in a high rate of spurious347

OTUs compared to these methods. Nonetheless,348

there were important differences between the three349

methods, particularly in terms of richness and when350

profiling rare taxa (Nearing et al. 2018). A more351

recent independent validation based on a higher352

number of test datasets reached similar conclusions353

(Prodan et al. 2020).354

In addition to 16S rRNA gene sequencing data,355

there are multiple marker genes appropriate for profil-356

ing eukaryotic diversity. As mentioned above, the 18S357

rRNA gene is the homolog of the 16S rRNA gene in358

eukaryotes and is widely used to profile that domain.359

However, fungi are more difficult to distinguish based360

on the 18S rRNA gene, because fungi lack several361

variable regions for this gene (Schoch et al. 2012).362

Instead, the internal transcribed spacer (ITS) region,363

although not strictly a marker gene, is more often364

amplified to study fungal communities, because it365

typically has more resolution to distinguish fungi366

than the 18S rRNA gene (Liu et al. 2015). This367

region is within the nuclear rRNA cistron of fungi368

genomes, which contains the 18S, 5.8S, and the 28S369

rRNA genes. The ITS regions encompasses the two370

intergenic regions, which have relatively high rates371

of insertions and deletions, and the 5.8S rRNA gene372

(Schoch et al. 2012). Only a single intergenic373

region is typically amplified, referred to as ITS1 or374

ITS2, which have better discriminatory resolution375

for the major phyla Basidiomycota and Ascomycota,376

respectively (Saroj et al. 2015).377

Although the marker genes described above are378

the most commonly profiled loci, in many cases379

there are marker genes more appropriate for specific380

lineages. For example, several halophilic species of381

Haloarcula encode multiple 16S copies that can differ382

by more than 5% sequence identity within the same383

genome (Sun et al. 2013). Consequently, different384

marker genes are often used when building phylo-385

genetic trees representing a single species or genera.386

The chaperonin-60 (cpn60 ) gene is one useful alter-387

native prokaryotic marker gene, which is particularly388

useful for distinguishing taxa at resolutions below the389

genus level (Links et al. 2012). For example, the390

cpn60 gene has been frequently profiled in vaginal391

microbiome samples, because variation at this locus392

can distinguish subgroups of Gardnerella vaginalis393

that cannot be distinguished based on the 16S rRNA394

gene alone (Jayaprakash et al. 2012). More generally,395

marker genes for specialized comparisons are often396

chosen to match the defining function of a given397

lineage. For example, the methyl coenzyme M re-398

dundance A (mrcA) gene and a nitrate reductase gene 399

have been previously profiled to explore the diversity 400

of methanogens (Hallam et al. 2003) and nitrogen- 401

fixing microbes (Comeau et al. 2019), respectively. 402

Shotgun metagenomics 403

sequencing 404

Shotgun metagenomics sequencing (MGS) is a quali- 405

tatively different method from marker-gene sequenc- 406

ing, because it involves sequencing all DNA in a 407

community. This is a major advantage and means 408

that MGS data can profile any taxa, including viruses 409

and microbial eukaryotes. MGS approaches were first 410

applied to study ocean water communities through 411

a Fosmid cloning approach (Stein et al. 1996). 412

Building upon such early studies, the potential for 413

leveraging MGS was widely publicized by an investi- 414

gation into the microbial diversity of the Sargasso 415

Sea (Venter et al. 2004). This study identified 416

1.2 million previously unknown genes and many 417

other microbial features that would be impossible 418

to study with 16S rRNA gene sequencing. These 419

and other related observations sparked an explosion 420

of interest in profiling microbial communities with 421

MGS approaches. This interest has culminated in 422

the generation of enormous MGS datasets such as 423

the ongoing work on the Earth Microbiome Project 424

(Thompson et al. 2017) and the Human Microbiome 425

Project (Lloyd-Price et al. 2017). 426

There are two main approaches for analyzing 427

MGS data: read-based workflows and metagenomics 428

assembly. Each of these approaches has strengths 429

and weaknesses, but in both cases the generated 430

profiles imprecisely reflect biological reality. For 431

instance, the number of species identified by different 432

read-based methods can vary by three orders of 433

magnitude (McIntyre et al. 2017). The exact species 434

relative abundances can also drastically differ across 435

tools, as recently shown in a comparison of read- 436

based methods applied to simulated datasets (Ye et 437

al. 2019). Different approaches for metagenomic 438

assembly will produce different assembled contigs 439

and microbial profiles as well (Olson et al. 2019). 440

Unsurprisingly, given this wide variation, there is also 441

low concordance between 16S sequencing and MGS 442

data taken from the same samples. For example, 443

one comparison found that fewer than 50% of phyla 444

identified in water samples based on 16S sequencing 445

were also identified in the corresponding MGS profiles 446

(Tessler et al. 2017). This wide variation in results 447

highlights that any interpretation of MGS profiles, 448

similar to 16S profiles, should be done cautiously. It 449

5

Reviwer
Highlight
there are many similar examples from Bacteria as well

Reviwer
Highlight
rpoB was suggestded as well a a general marker to replace 16Shttps://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-019-1546-z



is crucial to appreciate that any approach will have450

important weaknesses and that the generated profile451

will only partially represent the actual microbial452

diversity.453

With those important caveats in mind, an under-454

standing of the different approaches is nonetheless455

important to give context to MGS data analysis.456

Read-based workflows involve little or no assem-457

bly of the reads and instead each read (or pair458

of reads) is treated independently. This is the459

most common approach for analyzing MGS data,460

particularly because it can be performed with low461

sequencing depth (Hillmann et al. 2018) and in462

complex communities (Zhou et al. 2015). However,463

an important disadvantage of this approach is that464

taxonomic and functional annotations are typically465

generated and treated as entirely independent data466

types (Figure 1a). It is also possible to map reads467

against a set of known reference genomes, which does468

link the two data types (Figure 1b). Although this469

is an invaluable approach when applied to genomes470

assembled from the study environment (see below),471

the results are typically near incomprehensible when472

reads are mapped against a database of thousands473

of genomes. Instead, the most common approach474

for generating taxonomic profiles is either based on a475

marker-gene or k-mer method.476

Marker-gene approaches are based on the insight477

that specific genes can be used to identify the pres-478

ence and relative abundance of certain taxa. An479

extreme example is to use solely the 16S rRNA480

gene for taxonomic classification (Hao and Chen481

2012). More commonly, marker-gene approaches482

base classifications on many genes. For instance,483

PhyloSift (Darling et al. 2014) leverages 37 nearly484

universal prokaryotic marker-genes (Wu et al. 2013)485

in addition to eukaryotic and viral gene sets to make486

a combined set of approximately 800 (mainly viral)487

gene families for classification. Aligned reads are488

placed into a phylogenetic tree of reference sequences489

and taxonomic classification is performed based on490

summing the likelihood of each taxa based on each491

read placement (Darling et al. 2014). MetaPhlAn2 is492

a contrasting approach that instead bases taxonomic493

predictions on the presence of clade-specific marker494

genes, which are genes only found in that given495

lineage, and found in all members (Truong et al.496

2015). This method has rapidly become the most497

popular marker-gene MGS approach. However, given498

that this approach is limited by the existence of499

robust clade-specific genes, it is not surprising that500

it tends to have low sensitivity (Tessler et al. 2017;501

Miossec et al. 2020), meaning that it misses taxa that502

are actually present.503

In contrast, k-mer-based approaches are much 504

more sensitive but have slightly lower specificity 505

than marker-gene methods (Miossec et al. 2020). 506

These approaches search for exact matches of short 507

DNA sequences (k-mers) within reference genomes. 508

An algorithm such as lowest-common ancestor is 509

then performed to determine the likely taxonomic 510

classification based on all matching genomes. Two 511

common kmer-based approaches are kraken2 (Wood 512

et al. 2019) and centrifuge (Kim et al. 2016), both of 513

which match k-mers against a compressed database 514

of reference genomes. In contrast to the marker-gene 515

results, the main challenge of analyzing taxonomic 516

profiles output by these methods is the high number 517

of rare taxa of different ranks identified, some of 518

which may be false positives. Summarizing the 519

output profiles with an additional approach, such as 520

the Bayesian abundance re-estimation tool Bracken 521

(Lu et al. 2017) in the case kraken2 data, can help 522

partially mitigate this problem. 523

Most functional read-based methods are based 524

on a similarity search of reads against a database 525

of known gene families. This is primarily done in 526

protein space, because protein similarity matches are 527

more informative and the database requirements are 528

lower (Koonin and Galperin 2003). The common sim- 529

ilarity searching tool BLASTX is prohibitively slow 530

when scanning millions of reads, which has driven the 531

development of faster alternatives like DIAMOND 532

(Buchfink et al. 2015) and MMseqs2 (Steinegger 533

and Söding 2017). These faster alternatives are 534

leveraged by workflows implemented in software such 535

as MEGAN (Huson et al. 2007) and HUMAnN2 536

(Franzosa et al. 2018) to identify gene family matches 537

and output overall metagenome profiles. HUMAnN2 538

is a unique approach in that it first screens reads that 539

map to reference genomes of taxa identified as present 540

with MetaPhlAn2. This step enables a small subset of 541

gene families to be linked directly to particular taxa. 542

However, the vast majority of gene families typically 543

have no taxonomic links and are only part of the 544

community-wide metagenome. There are clear issues 545

with the general approach implemented by these gene 546

profiling approaches, as has been previously observed: 547

“genes are expressed in cells, not in a homogenized 548

cytoplasmic soup” (McMahon 2015). 549

Linking functional annotations to specific taxa 550

by assembling raw reads is the ideal approach to 551

resolve this problem, but this too comes with caveats. 552

Most importantly, insufficiently high read depth, 553

which depends on the complexity of a sample, can 554

result in too few assembled contigs to sensibly ana- 555

lyze. Nonetheless, with sufficiently high read depth 556

metagenome assembly can be a valuable way to 557
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Figure 1: Key approaches for generating joint taxonomic and functional data from microbiome
sequencing data. (a) Read-based processing of shotgun metagenomics data to generate functional and taxonomic
abundance tables independently. (b) Read mapping to genome sequences can be used to infer the presence of a
taxon based on read coverage. It can also be used to identify the presence of strains missing specific genes or of
the inverse: a community containing specific genes from a genome while the rest of the genome is absent. Note
that all of these inferences are best made in low complexity communities where there are few ambiguous read
mappings, and where the possible set of genomes present is relatively well defined. This is particularly applicable
when mapping reads against metagenome assembled genomes from the same dataset. (c) Metagenomics-based
genome assembly involves assembling reads into contigs and then binning contigs into categories representing
metagenome-assembled genomes. Missing from this diagram is the important quality control step, which is
essential to follow-up metagenomics assembly. Also, this approach is best for profiling dominant organisms, and
produces the best results when sequencing read depth is high and/or community complexity is low. (d) Genome
prediction based on marker gene sequences is another method of producing joint taxa and function profiles, which
in this case are explicitly linked, similar to assembling genomes. However, these approaches are highly biased
towards the specific reference genomes used for prediction. In addition, they can only predict genome content to
the level at which the chosen marker gene differs between closely related taxa. This is a major limitation as many
strains of bacteria with highly divergent genome content have identical marker gene sequences.
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leverage information about microbial communities558

(Figure 1c). There are many metagenome assembly559

tools available, such as MetaSPAdes (Nurk et al.560

2017) and Megahit (Li et al. 2015). The resulting561

assembled contigs from these approaches are typically562

categorized (or “binned”) into groups of contigs with563

similar characteristics. This binning is primarily564

performed by identifying contigs that are found at565

similar relative abundances across samples and/or566

that contain similar proportions of different k-mers567

(particularly 3-mers) (Ayling et al. 2019). These bins568

represent metagenome-assembled genomes (MAGs)569

that must undergo stringent checks to help evaluate570

the overall quality (Bowers et al. 2017). The571

key method for performing quality control on these572

genomes is to scan for known universal single-copy573

genes (USCGs), with a tool such as CheckM (Parks574

et al. 2015). The percentage of USCGs present575

provides an estimate of overall genome completeness.576

In contrast, the number of USCGs found in multiple577

copies can be used to calculate the redundancy,578

which is potential evidence for contamination in the579

genome.580

Characteristics of microbiome581

count data582

Regardless of the sequencing technology and work-583

flow used for profiling a microbial community, the584

final product is typically a count table. This is true585

for many sequencing approaches, such as RNA se-586

quencing, but there are several important differences.587

First, unlike in the case of RNA sequencing where588

there are typically a known number of genomic loci,589

novel taxa and functions are frequently identified in590

microbiome data. For instance, novel OTUs, ASVs,591

and contigs are frequently identified in taxonomic592

analyses. Similarly, 25-85% of proteins in MGS are593

novel microbial genes of unknown function (Prakash594

and Taylor 2012). Second, no statistical distribution595

fits microbiome data in all contexts. For example,596

many statistical distributions, including the negative597

binomial (Love et al. 2014), beta binomial (Martin598

et al. 2020), and Poisson (Faust et al. 2012)599

distributions have been proposed as appropriate fits600

to microbiome data. However, upon analysis with601

real data these and other distributions fit with incon-602

sistent accuracy (Weiss et al. 2017; Calgaro et al.603

2020). Last, microbiome count tables typically have604

high sparsity, meaning that there is a high proportion605

of features not found across many samples (Thorsen606

et al. 2016). These characteristics make microbiome607

data analysis challenging for all taxonomic analyses608

and most functional analyses (see Microbial functions 609

section). 610

These challenges are exacerbated by the inherent 611

compositionality of sequencing data. Compositional 612

data refers to data that is constrained to an arbi- 613

trary constant sum (Aitchison 1982), such as the 614

arbitrary number of raw sequencing reads output per 615

sample. This characteristic means that the observed 616

abundance of any given feature is dependent on the 617

observed abundance of all other features. A simple 618

example can help illustrate the implications of this 619

characteristic. Imagine a microbe, microbe x, at low 620

relative abundance in sample a and at high relative 621

abundance in sample b. An observer might naively 622

infer that there is more of microbe x in sample b than 623

in sample a. However, there are many reasons this 624

could be false. For instance, the absolute abundance 625

of microbe x could be the same in each sample but 626

the abundance of other microbes in general might be 627

higher in sample a. This higher total microbial load 628

would push the relative abundance of microbe x in 629

sample a down. Depending on the total microbial cell 630

count it is even possible that the absolute abundance 631

of microbe x could be higher in sample a than 632

in sample b, but that the relative abundance is 633

simply lower. This example highlights a necessary 634

consideration regarding microbiome sequencing data 635

analysis: it only provides information on the relative 636

abundances, or percentages, of features and does not 637

provide insight on feature absolute abundances. 638

This important characteristic was not widely ap- 639

preciated in the field until relatively recently, when 640

researchers identified fatal issues with common ap- 641

proaches for analyzing microbiome data (Gloor et 642

al. 2016, 2017). Standard differential abundance ap- 643

proaches, such as the t-test and Wilcoxon test, when 644

applied to relative abundances, and microbiome- 645

specific tools such as LEfSe (Segata et al. 2011) 646

do not account for this compositionality. Com- 647

mon summary metrics for microbiome data, such as 648

the UniFrac distance, also suffer from this problem 649

(Gloor et al. 2017). This is a major issue, because 650

ignoring this characteristic is known to lead to spu- 651

rious discoveries with compositional data (Aitchison 652

1982; Jackson 1997; Fernandes et al. 2014). 653

Fortunately, there is active work in the field 654

to resolve this issue and numerous compositional 655

approaches have been developed. The focus has 656

primarily been on developing novel correlation (Fried- 657

man and Alm 2012; Kurtz et al. 2015; Schwager 658

et al. 2017) and differential abundance approaches, 659

such as ALDEx2 (Fernandes et al. 2013, 2014) and 660

ANCOM (Mandal et al. 2015). A common theme 661

of these compositional approaches is that the data 662
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is transformed based on the ratio of feature relative663

abundances to some reference frame (Aitchison 1982;664

Morton et al. 2019). This choice of reference665

frame varies substantially between approaches. For666

instance, ALDEx2 transforms relative abundances by667

the centred log-ratio (CLR) transformation (Fernan-668

des et al. 2013), which essentially normalizes feature669

relative abundances by the mean relative abundance670

per sample. This approach transforms the original671

data but maintains the interpretation of individual672

features. In contrast, it has been suggested that673

analyses could instead be based on ratios between674

features (Morton et al. 2019), which converts the675

data type into comparisons of features rather than676

individual features.677

There are no best-practices regarding approaches678

that compositionally transform individual features.679

More generally, differential abundance tests com-680

monly produce widely different sets of significant taxa681

from each other (Thorsen et al. 2016; Weiss et al.682

2017; Hawinkel et al. 2019). This wide variation is683

largely due to specific characteristics of microbiome684

count data. A large proportion of the variation in re-685

sults is driven by high false discovery rates. Although686

many methods advertise that only approximately 5%687

of significant taxa are likely false positives, it has688

been estimated that for some methods the actual false689

discovery rate is substantially higher (Hawinkel et al.690

2019). This particular validation observed this trend691

for several methods, including ANCOM (Mandal et692

al. 2015) and metagenomeSeq (Paulson et al. 2013),693

two microbiome-oriented methods that are otherwise694

considered conservative (Paulson et al. 2013; Weiss695

et al. 2017). In addition, a recent evaluation of696

differential abundance tools found that compositional697

methods are actually less robust than several non-698

compositional alternatives (Calgaro et al. 2020).699

Given this wide variation in differential abun-700

dance tool performance and unclear best-practices,701

how is a microbiome researcher to proceed? One702

possible answer is that a change in expectations703

regarding the interpretability of microbiome data704

analysis is needed. In particular, analyses using705

ratios between the relative abundances of taxa has706

been shown to be robust, although it comes at707

the cost of interpretability (Morton et al. 2019).708

However, an important issue is how to determine709

which taxa should be the numerator and denominator710

of each ratio. One solution is to leverage the711

bifurcating structure of a clustered tree (Egozcue712

and Pawlowsky-Glahn 2011; Morton et al. 2017)713

or phylogenetic tree (Silverman et al. 2017) of714

features. Analyses can be focused on the ratios in715

relative abundances between features on the left-hand716

and right-hand of each node in the tree. Despite 717

the potential of this approach, it is rarely used for 718

standard microbiome analyses because it is unclear 719

how to biologically interpret any differences in the 720

values of these ratios across samples. 721

This discussion of microbiome data characteristics 722

has focused on taxonomic features based on either 723

16S sequencing or read-based MGS data analysis. 724

However, it is important to emphasize that count 725

tables produced from MAGs do not resolve this issue. 726

In fact, attempting to account for these challenging 727

characteristics of microbiome count data and the 728

links between taxa and function makes the analysis 729

more difficult. 730

Microbial functions 731

To this point we have only discussed functional micro- 732

biome data in vague terms as referring to microbial 733

gene abundances. When based on DNA sequencing 734

data this information summarizes the functional po- 735

tential, meaning the functions that are present, but 736

not necessarily active in a community. However, 737

rather than individual gene sequences, research is 738

typically focused on gene families, which are gene 739

clusters. Alternatively, the focus is sometimes on 740

higher-order functional categories like pathways. To 741

complicate matters further, there are several different 742

functional ontologies, which are different frameworks 743

for studying functions at different resolutions. De- 744

pending on which of these functional ontologies and 745

sub-categories are analyzed, the characteristics of the 746

data can drastically differ. 747

The Universal Protein Resource (UniProt) Refer- 748

ence Clusters (UniRef) database contains all protein 749

sequences from the Swiss-Prot (manually curated) 750

and TrEMBL (automated) databases clustered at 751

either 50%, 90%, or 100% identity (Apweiler et al. 752

2004). The most recent versions of these clusters 753

have been generated with the MMseqs2 algorithm 754

(Steinegger and Söding 2018). As of June 30th, 2020, 755

the 100% identity clusters (called UniRef100), cor- 756

responded to 235,561,514 unique protein sequences, 757

which provides a detailed summary of almost all 758

known protein sequences. Despite being clustered 759

at lower identity thresholds, UniRef50 and UniRef90 760

nonetheless contain enormous numbers of protein 761

clusters: 41,883,832 and 115,885,342, respectively. 762

The UniRef database contrasts with another com- 763

mon functional ontology, the Kyoto Encyclopedia of 764

Genes and Genomes (KEGG) database (Kanehisa 765

and Goto 2000; Kanehisa et al. 2016). KEGG 766

is based on 23,530 individual gene families (as of 767
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September 10th, 2020), which are called KEGG768

orthologs (KOs). The advantage of KOs is that769

the majority have well-described molecular functions770

that can be linked to higher-order KEGG pathways771

and modules. Accordingly, any analysis of KEGG772

data will likely result in less sparse count tables than773

the corresponding UniRef-based database, simply be-774

cause KOs are shared across more taxa than UniRef775

clusters.776

To illustrate this point, we and our colleagues777

have previously compared the taxonomic coverage of778

each function within these two functional ontologies779

and each sub-category (Inkpen et al. 2017). We780

found that all UniRef functions, including those in781

UniRef50 clusters, are on average found in a single782

domain and encoded by fewer than four species. In783

contrast, we found that KOs were encoded in 1.3784

domains and 184.3 species on average. Similarly,785

the high-level KEGG modules and pathways were786

predicted to be potentially active in a mean of 1.7 and787

2.5 domains and 671 and 1267.6 species, respectively788

(Inkpen et al. 2017). Based on these statistics,789

clearly a shift in the abundance of a UniRef cluster790

should not be treated the same as a KEGG function:791

the former corresponds to the activity of a small792

number of species while the latter could correspond793

to a large assemblage. This example highlights that794

the choice of how function is defined in a given795

analysis can have profound effects on the biological796

interpretation.797

In addition to UniRef and KEGG, several other798

functional ontologies have been leveraged for micro-799

biome analyses. Key examples of additional func-800

tion types include: Clusters of Orthologous Genes801

(COGs) (Tatusov et al. 2000; Makarova et al. 2015),802

Enzyme Commission (EC) numbers, Protein families803

(Pfam) (Punta et al. 2012; Finn et al. 2014), and804

TIGRFAMs (Haft et al. 2003). These categories805

represent a range of approaches for defining gene806

families and functional categories.807

The COG strategy for functional annotation808

was originally intended to phylogenetically classify809

proteins into groups of orthologs (Tatusov et al.810

2000). This one-to-one approach of matching indi-811

vidual orthologs has now been expanded to allow812

for more complex relationships between genes, such813

as paralogs and horizontally transferred homologs814

(Makarova et al. 2015; Galperin et al. 2019). As of815

2015, there were 4,631 independent COGs (Galperin816

et al. 2015). The COG framework is similar to that817

of the eggNOG database (Jensen et al. 2008), which818

is a more high-throughput, automated approach.819

However, the key advantage of the COG database820

is that orthologous genes are clustered into 26 inter-821

pretable functional categories, which are expanded 822

from categories originally defined to functionally bin 823

Escherichia coli genes (Riley 1993). 824

The EC number framework, which was developed 825

in 1992 by the “International Union of Biochemistry 826

and Molecular Biology”, is a contrasting approach 827

for functional annotation. Instead of focusing on 828

orthologous genes, EC numbers specify particular 829

enzyme-catalyzed reactions. An interesting charac- 830

teristic of this database is that these reactions can be 831

performed by non-homologous isofunctional enzymes 832

(Omelchenko et al. 2010). As of August 12th, 2020, 833

there were 6,520 EC numbers, which correspond to 834

one of four levels of granularity. For example, the ac- 835

cession EC 3.5.1.2 corresponds to glutaminases, while 836

the higher-level categories correspond to hydrolases 837

(3.-.-.-), that act on carbon-nitrogen bonds other than 838

peptide bonds (3.5.-.-), and that are in linear amides 839

(3.5.1.-). One major advantage of EC numbers is that 840

because they specify exact enzymatic reactions they 841

are straight-forward to link into pathway ontologies 842

based on reactions, such as MetaCyc pathways (Caspi 843

et al. 2013). 844

The Pfam database categorizes protein families, 845

which are protein regions that share sequence ho- 846

mology (Punta et al. 2012). Individual proteins 847

with multiple domains can thus belong to multiple 848

Pfam families. Each Pfam family is represented by 849

a hidden Markov model (HMM), which models the 850

likely amino acids at each residue and the likely 851

adjacent amino acids based on curated alignments 852

of representative protein sequence. This approach 853

identified homologous protein regions, which are 854

often hypothesized to have a shared evolutionary 855

history, but not necessarily. As of May 2020, there 856

were 18,259 Pfam families. 857

Lastly, TIGRFAMs are manually curated protein 858

families, which are also identified based on HMMs, 859

but also additional pertinent information (Haft et 860

al. 2003). As of September 16th, 2014, there were 861

4,488 TIGRFAMs. The distinguishing feature for 862

this database is that different information supple- 863

ments each HMM. For instance, certain TIGRFAM 864

are annotated based on species metabolic context 865

and neighbouring genes, while others are based on 866

validated functions from the scientific literature. This 867

database has been less commonly analyzed in recent 868

years and is best known as the annotation system 869

for early large-scale metagenomics projects (Venter 870

et al. 2004). Alternative approaches, such as the 871

FIGfam protein database are now more commonly 872

used than TIGRFAMs. FIGfams are based on a 873

similar approach, but instead of being manually 874

curated they are aggregated into isofunctional groups 875
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based on shared roles in specific subsystems (Meyer876

et al. 2009).877

A recurrent question thus far has been that given878

a range of comparable, or contrasting, bioinformatics879

options, how is one to proceed? Fortunately, in the880

case of selecting functional ontologies, the choice is881

much clearer than other bioinformatics areas. Each882

functional database typically excels for different pur-883

poses. For instance, UniRef is useful for identifying884

uncharacterized genes that may be of interest in885

an environment, but quickly becomes challenging to886

interpret and analyze in diverse communities.887

In contrast, KEGG is useful for looking for shifts888

in well-described functions at a high level, which889

means this database is more robust to granular890

functional diversity. Due to also being more robust891

to granular functional diversity and because they892

are more interpretable, pathway-level functions are893

often of particular interest. For instance, obesity894

is associated with an enrichment of phosphotrans-895

ferase systems involved in carbohydrate processing896

in human and mouse gut microbiomes (Turnbaugh897

et al. 2008, 2009). This straight-forward explanation898

quickly communicates the pertinent biological details,899

which might be lost by focusing on less granular900

levels.901

However, it is worth noting that pathways identi-902

fied based on DNA sequencing are merely theoretical903

reconstruction based on the identified individual gene904

families. Although there are several pathway recon-905

struction approaches, they all require some mapping906

from gene families or reactions to pathways. This907

mapping can be structured, meaning that optional908

and required contributors can be specified, or non-909

structured, meaning that all genes and/or reactions910

are treated equally.911

The näıve approach for pathway reconstruction912

is to assume that a pathway is present if any gene913

or reaction involved is present in the community.914

This was the predominant approach used for pathway915

inference in early functional analyses (Moriya et al.916

2007; Meyer et al. 2008) and in several pathway917

inference tools such as PICRUSt (Langille et al.918

2013). Pathway abundance under this framework919

is calculated by summing the abundance of each920

contributing gene family. This approach errs towards921

avoiding missing the presence of a pathway, which is a922

concern in metagenomes as key genes may be missing923

due to mis-annotations. However, this approach924

comes at the cost of spurious annotations. Based925

on the näıve mapping approach the human genome926

was previously annotated as including the KEGG927

pathway equivalent of the reductive carboxylate cycle928

(Ye and Doak 2011). This pathway is restricted to929

autotrophic microbes and is similar to reversing the 930

Krebs cycle. Consequently, several gene families are 931

shared in both processes. Under the näıve mapping 932

approach, the presence of genes involved in the Krebs 933

cycle are also evidence for the predicted presence of 934

this atypical microbial pathway in humans. Similarly, 935

vitamin C biosynthesis would also be predicted in 936

humans based on the näıve approach (Ye and Doak 937

2011). However, the GLO gene, which encodes 938

the protein involved in the key last step of vitamin 939

C biosynthesis in mammals, is pseudogenized in 940

humans (Drouin et al. 2011), which makes vitamin 941

C biosynthesis impossible. 942

The Minimal set of Pathways (MinPath) ap- 943

proach is an approach developed to address this 944

issue (Ye and Doak 2011). This tool identifies 945

the smallest set of pathways, based on maximum 946

parsimony, that are required to explain the presence 947

of a set of proteins. In this way, the approach 948

is more conservative than näıve mapping and also 949

accounts for incomplete protein sets. This method 950

has been applied in numerous contexts, including for 951

the “HMP Unified Metabolic Analysis Network 2” 952

(HUMAnN2) (Abubucker et al. 2012; Franzosa et 953

al. 2018) MGS gene family profiling and pathway 954

reconstruction framework. This popular framework 955

reconstructs pathways based on MinPath and infers 956

pathway abundance based on different approaches, 957

depending if the pathway mapping is structured. For 958

unstructured mappings, the arithmetic mean of the 959

upper half of individual gene family abundances is 960

taken to be the pathway abundance (Abubucker et 961

al. 2012). For structured mappings, the harmonic 962

mean of the key (i.e. required) genes families is 963

computed for pathway abundance (Franzosa et al. 964

2018). Both these approaches are motivated by the 965

need to be robust to variable abundance in alternative 966

gene families. 967

Although this approach for MGS pathway recon- 968

struction is commonly performed, it is important to 969

emphasize that it has not been universally accepted 970

and there remains disagreement about best-practices. 971

For example, “Evidence-based Metagenomic Path- 972

way Assignment using geNe Abundance DAta” (EM- 973

PANADA) is a method that addresses the same 974

issue as MinPath and HUMAnN2 in a different way 975

(Manor and Borenstein 2017a). This method focuses 976

pathway reconstruction on distinguishing genes that 977

are shared with multiple pathways from those that 978

are unique to a single pathway. Pathway support 979

weightings are first given by the average abundance 980

of gene families unique to each given pathway. The 981

abundance of all shared gene families is then parti- 982

tioned between all pathways according to their rel- 983
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ative support values. Pathway abundances are then984

taken as the sum of the unique gene family relative985

abundances and the partitioned relative abundances986

of the shared gene families (Manor and Borenstein987

2017a).988

The exact reconstructed pathways and their re-989

spective abundances differ depending on whether990

näıve mapping, MinPath/HUMAnN2, or EM-991

PANADA are used. Validating pathway reconstruc-992

tions is challenging without a gold-standard compar-993

ison, particularly in metagenomes. Even in isolated994

genomes, as demonstrated by the above examples of995

the human pathway reconstructions, pathway recon-996

struction is non-trivial. However, the advantage in997

these cases is that experimental validation of pathway998

reconstructions is possible (Francke et al. 2005;999

Oberhardt et al. 2008). Such validations would1000

be possible if predictions are based on individual1001

members of a microbiome, but it is less clear what1002

experiments could validate pathways predicted for1003

an overall community. In MGS data pathways are1004

typically inferred as though all gene families were1005

free to interact with each other. In other words,1006

they are inferred as though there was universal cross-1007

feeding. All three approaches described above are1008

intended to be used for such community-wide gene1009

family profiles. However, as mentioned above, this1010

assumption is invalid because clearly not all proteins1011

and metabolites in the microbiome can freely interact1012

(McMahon 2015). The implications of this assump-1013

tion being invalid remain unclear, but nonetheless it1014

is an important caveat when interpreting pathway1015

reconstruction data based on community-wide MGS1016

data.1017

This section would be incomplete without ad-1018

dressing the most common discussion regarding mi-1019

crobiome functional data: its ostensible high stability.1020

Functional pathways are commonly at similar relative1021

abundances across the same sample-types whereas1022

taxonomic features, such as phyla, can substantially1023

vary (Turnbaugh et al. 2009; Burke et al. 2011;1024

HMP-consortium 2013; Louca et al. 2016). This1025

functional consistency is often taken to be evidence1026

of environmental selection for particular microbial1027

functions (Turnbaugh et al. 2009; Louca and Doebeli1028

2017). However, the validity of comparing variation1029

between these two data types is rarely discussed.1030

We and our colleagues investigated this question1031

from a philosophical perspective and concluded that1032

any meaningful comparison of the relative variation1033

between taxonomic and functional profiles is likely1034

impossible (Inkpen et al. 2017). This difficulty is1035

largely because it is unclear which levels of gran-1036

ularity would be meaningful to compare between1037

each data type. In other words, each data type is 1038

qualitatively different from the other and the choice 1039

of how to compare the two is based on arbitrary 1040

decisions. 1041

For instance, as discussed above, the sparsity 1042

and number of possible functional categories differs 1043

drastically across ontologies and sub-categories. We 1044

demonstrated how observations of functional and 1045

taxonomic stability are entirely dependent on how 1046

function and taxa are defined (Inkpen et al. 2017). 1047

We did this by comparing human stool sample 1048

profiles at each possible taxonomic rank and also 1049

each functional level for both the KEGG and UniRef 1050

functional ontologies. As expected, phyla were less 1051

stable across the samples than KEGG pathways, 1052

but more stable than UniRef50 protein clusters. 1053

However, this area remains an area of active debate. 1054

Others have also argued that taxonomic variability 1055

never unambiguously reflects functional variation, 1056

which they believe is strong evidence for functional 1057

conservation (Louca et al. 2018a). Nonetheless, 1058

this example demonstrates once again the common 1059

theme throughout this section: “function” has many 1060

meanings. 1061

Metagenome prediction 1062

methods 1063

Ideally, analyses of microbial functions are based on 1064

MGS data. However, predicted functions based on 1065

16S rRNA gene (hereafter 16S) sequencing are often 1066

analysed instead. Metagenome prediction, predicting 1067

complete genomes for each individual ASV or taxon 1068

weighted by their relative abundance, when based on 1069

16S data is much cheaper than performing MGS. 1070

There are additional advantages of predicted 1071

metagenomes over actual MGS data. Namely, MGS 1072

is often prohibitively expensive for samples where 1073

host DNA overwhelms microbial DNA. The high 1074

read depths required to yield sufficient microbial read 1075

depths is infeasible in many cases (Gevers et al. 1076

2014). Similarly, low-biomass samples are difficult 1077

to accurately quantify with MGS, but they can 1078

be profiled with PCR-based 16S sequencing. For 1079

example, applying MGS to profile human tumours 1080

is currently infeasible, but it is straight-forward to 1081

apply 16S sequencing (Nejman et al. 2020). In 1082

both cases, for host DNA contaminated and low- 1083

biomass samples, metagenome prediction based on 1084

16S profiles is a useful alternative to MGS. 1085

However, metagenome prediction suffers from im- 1086

portant drawbacks. The key problematic assumption 1087

is that the marker gene used for predictions, typically 1088
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the 16S, is strongly associated with genome content.1089

This broad assumption is correct: genera such as1090

Lactobacillus and Desulfobacter can be easily distin-1091

guished based on the 16S and they are enriched for1092

extremely different functions. Namely, Lactobacillus1093

can often perform lactic acid fermentation whereas1094

Desulfobacter can typically oxidize acetate to CO2.1095

Such comparisons of characteristic functions between1096

distantly related taxa are uncontroversial. The1097

difficulty arises when approaches attempt to predict1098

entire genome contents for an entire community,1099

including for closely related taxa.1100

This issue is highlighted by classic DNA hy-1101

bridization experiments (Mandel 1966; Brenner1102

1973). These experiments were based on mixing1103

single-stranded DNA from two organisms and record-1104

ing the melting temperature required to separate the1105

strands. Higher melting temperatures are required to1106

break apart DNA that shares more complementary1107

bases connected by hydrogen bonds. Accordingly,1108

this approach provides a rough estimate of the genetic1109

distance between different strains or species.1110

An early comparison of these genetic distances1111

with 16S dissimilarity across 34 bacteria computed1112

a linear correlation of 0.728 (Devereux et al. 1990).1113

However, the relationship between these two metrics1114

is not linear: many bacteria with highly similar1115

16S genes have hybridization rates much lower than1116

70% (Stackebrandt and Goebel 1994), which is the1117

traditional cut-off for delineating species. This trend1118

has been corroborated across diverse prokaryotes1119

(Hauben et al. 1997, 1999; Kang et al. 2007). In1120

addition, a meta-analysis of 16S gene sequencing and1121

DNA hybridization data from 45 bacterial genera1122

further clarified these observations (Keswani and1123

Whitman 2001). This analysis established that 78%1124

of the variability in hybridization rates could be1125

accounted for by 16S similarity, based on a non-1126

linear model. However, they also identified that a1127

minority of hybridization rates were extremely poorly1128

predicted by 16S similarity (Keswani and Whitman1129

2001).1130

These observations agree well with genomic com-1131

parisons of strains, which can drastically differ in1132

genome content. For example, across 17 E. coli1133

genomes there are 13,000 genes that are variably1134

distributed and only 2,200 core genes (Rasko et1135

al. 2008). This enormous range of genomic vari-1136

ation is not reflected at the 16S level, where E.1137

coli strains are typically >99% identical (Suardana1138

2014). These genomic differences can translate to1139

enormous variation at higher taxonomic levels as well.1140

For instance, a comparison of the genomes from 111141

Yersinia species found a range of genome sizes from1142

3.7 - 4.8 megabases (Chen et al. 2010). A closer 1143

comparison of three pathogenic species of Yersinia 1144

determined that they shared 2,558 protein clusters 1145

while 2,603 were variably distributed. These species- 1146

level differences are also not proportionally reflected 1147

by divergence in Yersinia species 16S genes, which 1148

are typically >97% identical (Ibrahim et al. 1993). 1149

These examples highlight that 16S similarity can be 1150

a poor predictor of genomic similarity. This issue 1151

is compounded when there are divergent 16S copies 1152

within the same genome, although typically these are 1153

>99.5% identical (Větrovský and Baldrian 2013). 1154

Variation in gene content within a taxonomic 1155

lineage is a recurrent observation across microbial 1156

communities. Variably present genes are often linked 1157

to putative niche-specific adaptations (Wilson et al. 1158

2005), such as genes affecting antibiotic resistance 1159

(Kallonen et al. 2017), carbohydrate catabolism 1160

(Arboleya et al. 2018), and wound healing (Kalan 1161

et al. 2019). Based on these and other observations, 1162

the understanding of bacterial genomic content has 1163

shifted from that of a static genome to a pan-genome, 1164

consisting of core and variable genes (Tettelin et 1165

al. 2005). Variably present genes are transmitted 1166

between genomes through horizontal gene transfer, 1167

which typically occurs between closely related organ- 1168

isms (Popa and Dagan 2011). However, horizontal 1169

gene transfer can also occur between distantly related 1170

organisms, such as between different bacterial phyla 1171

(Beiko et al. 2005; Kloesges et al. 2011; Martiny et 1172

al. 2013). 1173

The high variability between bacterial genomes 1174

and extensive horizontal gene transfer highlights 1175

the major challenges facing metagenome predic- 1176

tion. Despite these challenges, interest in performing 1177

metagenome predictions has continued, supported 1178

by several observations. First, although there are 1179

important outliers, 16S sequence identity does log- 1180

arithmically correlate well with the average nu- 1181

cleotide identity between genomes, with an R2 of 1182

0.79 (Konstantinidis and Tiedje 2005). Second, 16S 1183

sequence similarity does provide some information 1184

on the ecological similarity of bacteria (Chaffron et 1185

al. 2010). This was demonstrated by the fact that 1186

co-occurring environmental bacteria are more likely 1187

to have similar 16S sequences. In addition, overall 1188

differences in inferred KEGG pathway potential are 1189

strongly associated with 16S divergence (Chaffron et 1190

al. 2010). Last, within a given environment, such 1191

as the human gut, 16S divergence was shown to be 1192

particularly predictive of divergence in average gene 1193

content (Zaneveld et al. 2010). 1194

Originally, metagenome prediction workflows 1195

were based on matching 16S sequences to reference 1196
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genomes. By taking the best matching genome or1197

averaging across genomes with similar sequences, a1198

predicted genome annotation can be acquired for all1199

16S sequences (Figure 1d). To infer the metagenome1200

profile one must simply multiply the predicted1201

genome annotations for each 16S sequence by the1202

abundance of each 16S sequence in the metagenome.1203

In addition to predicting microbial functions linked to1204

Crohn’s disease (Morgan et al. 2012), this approach1205

has also been used to profile diet-related microbial1206

functions across mammals (Muegge et al. 2011)1207

and the functions of invasive bacteria within corals1208

(Barott et al. 2012). Although bioinformatics tools1209

for metagenome prediction are now typically used for1210

performing this task, this 16S-matching approach is1211

still used for custom analyses (Verster and Borenstein1212

2018; Bradley and Pollard 2020).1213

The first metagenome prediction tool to expand1214

beyond this approach, and specifically intended for1215

16S sequencing data, was “Phylogenetic Investigation1216

of Communities by Reconstruction of Unobserved1217

States” (PICRUSt1) (Langille et al. 2013). This1218

tool is based on leveraging classical ancestral-state1219

reconstruction methods, which have been widely used1220

in phylogenetics (Zaneveld and Thurber 2014). The1221

crucial extension of this framework is to extend1222

trait predictions from internal, or ancestral, nodes1223

in a phylogenetic tree to tips with unknown trait1224

values. This approach has been termed hidden-1225

state prediction (HSP) (Zaneveld and Thurber 2014).1226

We recently published a major update to PICRUSt,1227

called PICRUSt2 (Douglas et al. 2020). The key1228

improvement in PICRUSt2 is that predictions can1229

be made for novel 16S sequences with this tool1230

and custom databases can be more easily used for1231

analyses.1232

PICRUSt1 introduced the step of normalizing1233

relative abundances by the predicted number of 16S1234

copies within each genome, which is intended to1235

control biases in 16S sequencing due to copy number1236

(Farrelly et al. 1995). Importantly, although 16S1237

copy number correction has become a common step1238

for metagenome prediction (Angly et al. 2014),1239

accurately predicting 16S copy number is particularly1240

challenging. An independent validation of several1241

16S copy number prediction methods, including PI-1242

CRUSt1, identified poor agreement of predicted copy1243

numbers against existing reference genomes (Louca1244

et al. 2018b). In some cases, less than 10% of the1245

variance in actual 16S copy number was explained1246

by these predictions. In addition, these predictions1247

were often only slightly correlated between prediction1248

methods.1249

Since PICRUSt1 was published a number of1250

similar metagenome prediction tools have been de- 1251

veloped. All of these approaches aim to capture 1252

the shared phylogenetic signal in the distribution of 1253

functions across taxa. These tools include: PanFP 1254

(Jun et al. 2015), Piphillin (Iwai et al. 2016; Narayan 1255

et al. 2020), PAPRICA (Bowman and Ducklow 1256

2015), and Tax4Fun2 (Wemheuer et al. 2020). 1257

These metagenome prediction tools have primar- 1258

ily been validated by comparing how well the pre- 1259

dicted gene family abundances they output correlate 1260

with the abundances of gene families identified in 1261

MGS data from the same samples. This approach 1262

generally identifies high correlations between the two 1263

profiles. For example, predicted KOs output by 1264

PICRUSt1 based on Human Microbiome Project 1265

(HMP) samples were highly correlated with the 1266

matching MGS-identified data (Spearman r = 0.82) 1267

(Langille et al. 2013). Importantly, a high Spearman 1268

correlation is actually expected by chance in these 1269

comparisons simply because many genes are common 1270

in most environments while others are usually absent 1271

or rare. Upon comparing to this expectation the 1272

predictions are still significantly better than expected 1273

by chance, but only slightly (Douglas et al. 2020). 1274

Nonetheless, based on this approach, we found that 1275

PICRUSt2 performed marginally better than other 1276

tools (Douglas et al. 2020). However, it is noteworthy 1277

that Piphillin, which represents a much simpler 1278

approach based on a nearest-neighbour approach, 1279

performed only slightly worse overall and better in 1280

some contexts. 1281

An alternative approach for evaluating these 1282

methods is based on the concordance of differen- 1283

tial abundance results between actual and predicted 1284

metagenomics profiles. When we conducted this anal- 1285

ysis while validating PICRUSt2, we found that dif- 1286

ferential abundances tests on metagenome prediction 1287

tools agreed only moderately well with matching tests 1288

based on actual MGS data (Douglas et al. 2020). 1289

This is a crucial point to appreciate when analyzing 1290

metagenome prediction data; even though the overall 1291

predicted profiles might correlate with MGS profiles, 1292

the results from differential abundance testing might 1293

nonetheless be quite different. We also observed 1294

high variation across datasets in concordance between 1295

MGS and 16S-based predictions. In other words, 1296

differential abundance testing on predicted profiles 1297

resulted in fair agreement with MGS data on some 1298

datasets while disagreeing almost entirely on others. 1299

In addition, researchers performing independent work 1300

in this area have identified conflicting signals of how 1301

well individual metagenome prediction tools perform 1302

(Narayan et al. 2020; Sun et al. 2020). These 1303

observations might again reflect the high variation 1304
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across datasets in how well prediction profiles agree1305

with MGS results.1306

Current state of the integration1307

of taxonomic and functional1308

data types1309

The above discussion has described the many faces1310

of microbiome data types. Taxonomic and functional1311

microbiome data are typically generated indepen-1312

dently, but in some cases can be directly linked.1313

Regardless of the exact processing workflow for these1314

data types, we have yet to address one question: how1315

are they integrated?1316

For independent taxonomic and functional data1317

types this is largely done anecdotally. For example,1318

this is commonly done in regards to the nine genera1319

that are the primary producers of short-chain fatty1320

acids (SCFAs) in the human gut (Moya and Ferrer1321

2016). SCFA levels have long had an ambiguous1322

link with Crohn’s disease (CD) (Treem et al. 1994),1323

although they are typically negatively associated with1324

disease activity (Venegas et al. 2019). Due to this1325

association, there has been long-standing interest in1326

identifying microbial taxa that are associated with1327

altered SCFA levels. Accordingly, CD microbiome1328

studies commonly hypothesize that shifts in the rel-1329

ative abundance of any known SCFA-producing taxa1330

likely cause altered SCFA levels. For example, Fae-1331

calibacterium prausnitzii is a well-known commensal1332

SCFA-producer in the human gut and is consistently1333

found at lower levels in the CD patient microbiomes1334

(Wright et al. 2015). Although potential links1335

between lower levels of this species, in addition to1336

other taxa such as Roseburia (Laserna-Mendieta et1337

al. 2018), and SCFA levels are often discussed, this1338

is rarely formally investigated.1339

More often, anecdotal links between function and1340

taxa are based on observed associations between sig-1341

nificant features. Several such cases have previously1342

been noted as representative examples (Manor and1343

Borenstein 2017b). For instance, Propionibacterium1344

acnes has been identified as strongly correlated with1345

NADH dehydrogenase levels in the skin microbiome1346

(Oh et al. 2014). Consequently, this species was1347

implicated as the likely cause for changes in NADH1348

dehydrogenase levels. Similarly, Bacteroides thetaio-1349

taomicron relative abundance has been identified as1350

positively correlated with microbial genes involved1351

with the degradation of complex sugars and starch1352

in the infant gut (Bäckhed et al. 2015). Based1353

on this observation, this species was hypothesized1354

to be the key contributor to increased levels of 1355

these degradation genes. Such insights are valuable, 1356

but as previously discussed (Manor and Borenstein 1357

2017b), these anecdotal links alone are not convincing 1358

evidence that particular taxa are the primary contrib- 1359

utors to functional shifts. 1360

Linked taxonomic and functional data alone is not 1361

sufficient to resolve this issue. There are substantial 1362

challenges facing the integration of these data types 1363

besides simply generating a combined format. For 1364

example, two massive datasets have recently been 1365

published as part of the next iteration of the Human 1366

Microbiome Project. Both datasets include numerous 1367

sequencing and profiling technologies, including 16S 1368

and MGS, from the stool and various body-sites 1369

of IBD (Lloyd-Price et al. 2019) and individuals 1370

with pre-diabetes (Zhou et al. 2019). However, in 1371

each case there was little integration of microbiome 1372

functional and taxonomic data types. Instead, these 1373

features were largely tested independently, despite 1374

the availability of links between the data types, 1375

and associations between top features were discussed 1376

(Lloyd-Price et al. 2019; Zhou et al. 2019). 1377

In contrast to these examples, there have been 1378

calls for improved integration of these microbiome 1379

data types, which is rooted in a systems-level biology 1380

outlook (Greenblum et al. 2013). “Functional 1381

Shifts’ Taxonomic Contributors” (FishTaco) is one 1382

bioinformatics method developed for this purpose, 1383

which quantifies taxonomic contributions to func- 1384

tional shifts (Manor and Borenstein 2017b). One 1385

major application of this approach is to distinguish 1386

two explanations for why a function might be at 1387

high relative abundance (Figure 2). First, a function 1388

might be higher in relative abundance simply because 1389

it hitchhiked on the genome of a taxon that bloomed 1390

for other reasons. In contrast, an alternative explana- 1391

tion might be that many taxa performing the same 1392

function gained a growth advantage and thus grew 1393

in relative abundance. FishTaco can also identify 1394

functions that have grown in relative abundance 1395

simply because microbes that do not encode it are 1396

at lower levels. 1397

FishTaco works by first identifying significant 1398

shifts in functional abundances with a standard 1399

differential abundance test, typically a Wilcoxon test. 1400

Subsequently, a permutation analysis is undertaken, 1401

which consists of randomly shifting the relative abun- 1402

dance of a subset of taxa, while maintaining the 1403

rest. A large collection of such permutations is 1404

performed, which include permutations of single and 1405

multiple taxa in different replicates. Based on this 1406

approach an estimate of the relative contribution of 1407

each taxon to a functional shift can be estimated 1408
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Figure 2: Two explanations for why a gene family
might be at higher relative abundance that would
be impossible to distinguish without joint taxo-
nomic and functional data. Microbes encoding the
gene of interest (Gene X ) are indicated in red. This
diagram contrasts how a gene family might be blooming
due to a single taxon (left) versus a diverse set of
taxa (right). The importance of distinguishing these
scenarios is underappreciated: in the second case it is
more likely the gene family itself that confers a growth
or survival advantage in the environment. Note however
that these are not the only two reasons why the relative
abundance of a gene family might be at high levels in
an environment.

(Manor and Borenstein 2017b). These relative con-1409

tributions are then presented as stacked bar charts1410

breaking down the direction and magnitude of each1411

functional contribution. These visualizations help1412

distinguish when a functional shift is due to the1413

enrichment or depletion of taxa and also which1414

sample grouping the shift occurred within. This1415

approach was motivated by Shapley values, which1416

were introduced in game-theory to summarize the1417

contribution of each player in a multiplayer game1418

(Shapley 1953). Specifically, FishTaco leverages a1419

modified version of this approach that enables the1420

contribution of individual features to be estimated1421

in large datasets without exhaustively testing every1422

possible permutation (Keinan et al. 2004).1423

FishTaco represents an important advancement1424

in integration and improved interpretability of tax-1425

onomic and functional microbiome data. However,1426

it nonetheless suffers from major limitations. First,1427

although the taxonomic breakdown of contributors1428

to a function is valuable, the FishTaco approach1429

requires significant functions to be identified based1430

on the relative abundance of individual gene fami-1431

lies and pathways. This is done by systematically1432

testing all functions across the entire metagenome,1433

which is problematic when performed with a non-1434

compositional approach like a Wilcoxon test. This1435

approach also treats gene families under the bag-1436

of-genes model, which is inappropriate, as discussed1437

above. An improved method would conduct a com-1438

positionally sound analysis and integrate taxonomic 1439

information when identifying significant functions. 1440

An alternative method is phylogenize, which does 1441

address each of these issues (Bradley et al. 2018; 1442

Bradley and Pollard 2020). This approach tests 1443

for significant associations between the presence of 1444

a taxa within a given sample grouping and the 1445

probability that a taxon encodes a given gene fam- 1446

ily. This is performed through phylogenetic linear 1447

regression, which accounts for the genetic similarity 1448

of co-occurring taxa that might trivially be due to a 1449

shared evolutionary history. A separate phylogenetic 1450

linear model is fitted for each gene family. The key 1451

distinction of this approach from a normal linear 1452

model is that instead of the residuals being indepen- 1453

dent and normally distributed, they covary so that 1454

phylogenetically similar microbes have higher covari- 1455

ance (Bradley et al. 2018). This overall approach 1456

was partially motivated by an attempt to address a 1457

similar problem by comparing the species and gene 1458

trees of gut and non-gut microbes (Lozupone et al. 1459

2008). Based on simulated random data (i.e. data 1460

with no real functional shifts) the phylogenize au- 1461

thors demonstrated that performing standard linear 1462

models without controlling for phylogenetic structure 1463

results in false positive rates ranging from 20% - 1464

68%. In contrast, controlling for phylogenetic struc- 1465

ture with phylogenize resulted in a uniform P-value 1466

distribution and an appropriate false positive rate of 1467

5%. One interesting feature is that phylogenize does 1468

not directly analyze relative abundances. Instead, 1469

the tool converts taxa relative abundance into one of 1470

three formats: (1) binary presence/absence across all 1471

samples, (2) overall prevalence within each sample 1472

grouping, (3) or the specificity within each sample 1473

grouping (Bradley et al. 2018). 1474

Although phylogenize is undeniably an invaluable 1475

contribution to microbiome data analysis, it also 1476

has several limitations. First, information on taxa 1477

abundance is discarded entirely in favour of pres- 1478

ence/absence data. From one perspective this is an 1479

advantage; eliminating taxa relative abundances en- 1480

ables phylogenize to circumvent compositionality is- 1481

sues. However, relative abundance data is often more 1482

important to investigate, because key taxonomic 1483

shifts might not be detected by presence/absence 1484

alone. In addition, phylogenize reports significant 1485

gene families for each phylum in a dataset. This is 1486

performed to reduce the memory usage and to enable 1487

phylum-specific rates of evolution for each function 1488

(Bradley et al. 2018). This focus on the phylum 1489

level makes the results difficult to interpret for two 1490

reasons. First, it is insufficiently broad, because it 1491

limits the potential to identify functions distributed 1492
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across multiple phyla that might be linked with a1493

condition of interest. From another perspective,1494

this focus on the phylum level is also not specific1495

enough; although phylum-function associations are1496

valuable they do not provide information on the1497

relative contributions of lower-level taxa, such as1498

species, to the association. Accordingly, there is room1499

for improvement in both the statistical analysis and1500

interpretation of the phylogenize approach.1501

Despite the availability of approaches for integrat-1502

ing functional and taxonomic data, they have yet to1503

become a mainstay of microbiome analyses. However,1504

it is becoming common to visualize stacked bar-charts1505

of taxonomic contributors to functions of interest.1506

This is typically performed on predicted metagenome1507

output by PICRUSt or alternatively on HUMAnN21508

output, although this could be performed with any1509

linked taxa-function data. As discussed above, the1510

HUMAnN2 pipeline includes a step for identifying1511

particular strains in MGS dataset, which allows gene1512

families to be linked to those strains (Franzosa et al.1513

2018). In some cases this approach enables complete1514

links between taxa and function to be identified. For1515

instance, F. prausnitzii was shown to be the obvious1516

principal contributor to glutaryl-CoA biosynthesis1517

in the HMP gut MGS samples (Franzosa et al.1518

2018). However, more commonly there are numerous1519

taxonomic contributors to a single given function,1520

and it is difficult to interpret which taxa are the1521

key contributors by looking at visualizations alone.1522

Nonetheless, even in the presence of many taxonomic1523

contributors, the HUMAnN2 authors demonstrated1524

that these visualizations can provide information1525

about the diversity of taxa contributing to a function,1526

termed the contributional diversity (Franzosa et al.1527

2018). This is most often quantified with the Gini-1528

Simpson index, which is the complement of Simpson’s1529

evenness (Jost 2006).1530

Contributional diversity has been shown to be a1531

useful approach for delineating housekeeping path-1532

ways encoded by many taxa, intermediate pathways,1533

and those rarely encoded, which can correspond1534

to opportunists or keystone species. For instance,1535

F. prausnitzii has previously been linked with sev-1536

eral human microbiome pathways identified through1537

MGS that have intermediate contributional diversi-1538

ties (Abu-Ali et al. 2018). When present, this species1539

tended to contribute the majority of all pathways it1540

encoded.1541

This approach has also been valuable for profiling1542

shifts in the contributions to microbial pathways1543

over time, such as in the infant gut profiled with1544

MGS (Vatanen et al. 2018). In this case, several1545

microbial pathways, such as siderophore biosynthe-1546

sis, were found to display decreasing contributional 1547

diversity with age. This is an interesting observation 1548

because siderophores are costly to produce but are 1549

highly beneficial in the human gut. In particular, 1550

siderophores can confer a strong benefit to multi- 1551

ple community members, including those that do 1552

not produce siderophores, by providing access to 1553

iron. Siderophores have previously been presented as 1554

microbial functions whose distribution is consistent 1555

with the Black Queen Hypothesis (Morris et al. 1556

2012). This hypothesis states that adaptive gene loss 1557

may occur for functions that are costly to produce, 1558

provided that the function is provided by other 1559

community members. This hypothesis was discussed 1560

in the context of the infant microbiome as an expla- 1561

nation for why siderophore contributional diversity 1562

decreases over time (Vatanen et al. 2018): perhaps 1563

gene loss confers an adaptive benefit by avoiding the 1564

production of a costly metabolite. Although this is 1565

an interesting hypothesis, a less controversial inter- 1566

pretation of this result is simply that siderophores 1567

became less stably encoded over time in the profiled 1568

samples. 1569

Related to this point, two additional metrics 1570

have also been developed to summarize the stability 1571

of taxonomic contributions to microbial functions 1572

(Eng and Borenstein 2018). More specifically, these 1573

metrics are intended to summarize functional robust- 1574

ness across samples, which is the stability in the 1575

relative abundance for a given function in response 1576

to taxonomic perturbation. This is performed by 1577

generating a taxa-response curve that describes the 1578

average change in functional relative abundances in 1579

response to taxonomic perturbations of different mag- 1580

nitudes. Two metrics are then computed based upon 1581

these curves: attenuation and buffering. Attenuation 1582

captures how rapidly a function shifts with increasing 1583

taxonomic perturbation magnitudes. In contrast, 1584

buffering represents how well functional shifts are 1585

suppressed at smaller taxonomic perturbation mag- 1586

nitudes. 1587

Applying these metrics to PICRUSt-predicted 1588

metagenomes from 16S sequencing of human body 1589

sites, validated by a subset of MGS samples, yielded 1590

several novel perspectives. First, attenuation and 1591

buffering were conserved across body sites for micro- 1592

bial house-keeping pathways but varied for several 1593

others. For instance, robustness in the biosynthesis 1594

of unsaturated fatty acids varied substantially across 1595

body sites. In addition, human gut samples were 1596

found to have higher values of both attenuation and 1597

buffering than compared to vaginal samples. These 1598

trends were shown to be driven by more than simply 1599

lower richness in vaginal samples by subsampling 1600
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to comparable diversity levels across each body-site1601

(Eng and Borenstein 2018). These observations are1602

consistent with the controversial hypothesis that mi-1603

crobial communities may be under varying selection1604

strengths for functional robustness, depending on the1605

environment (Naeem et al. 1998; Ley et al. 2006).1606

The development of these metrics for summariz-1607

ing functional contributions represent an important1608

goal of microbiome research, which is to leverage1609

sequencing data to yield novel biological insights. In1610

contrast, another major goal is to answer a more1611

practical question: how useful is microbiome data for1612

classification and prediction tasks?1613

There is great interest in applying machine1614

learning approaches to microbiome sequencing data1615

(Knights et al. 2011). Most commonly this is1616

performed with either Support Vector Machine or1617

Random Forest (Breiman 2001) models. Applications1618

of these and other machine learning approaches to1619

microbiome data are primarily aimed at distinguish-1620

ing samples from different environments or disease1621

states (Zhou and Gallins 2019). Taxonomic features1622

are the focus of most such microbiome-based machine1623

learning approaches, which is true for both 16S1624

(Duvallet et al. 2017) and MGS (Pasolli et al.1625

2016) data. However, on a growing number of1626

occasions machine learning is focused on functional1627

data types. For example, a recent MGS meta-analysis1628

identified informative functional biomarkers across1629

several human diseases by applying machine learning1630

approaches to functional data types (Armour et al.1631

2019). Regardless of the data type, models trained on1632

microbiome data typically have low generalizability1633

across independent cohorts (Sze and Schloss 2016;1634

Douglas et al. 2018), although there are exceptions.1635

One major exception is microbiome-based mod-1636

elling of colorectal cancer, which in one investigation1637

was shown to be generalizable across five independent1638

datasets (Wirbel et al. 2019). This landmark study1639

also systematically compared the utility of functional1640

and taxonomic data types in these models and found1641

them to be comparable overall. This finding is1642

consistent with a past comparison of the classifica-1643

tion performance of 16S-based taxa and predicted1644

metagenome data (Ning and Beiko 2015). In the case1645

of predicted metagenomes, which are based on 16S1646

profiles, it is perhaps less surprising that they yield1647

comparable classification performance. However,1648

with MGS data in particular it might be possible to1649

detect robust, informative functions that might be1650

undetectable with taxonomy alone due to taxonomic1651

variability (Doolittle and Booth 2017).1652

Despite this great interest in applying machine1653

learning to different microbiome data types, there1654

has been little focus on integrating across them. 1655

The aforementioned comparison of 16S-based taxa 1656

and predicted functions is one exception where a 1657

hybrid classification model of both data types was 1658

created (Ning and Beiko 2015). In this case, there 1659

was a small increase in classification performance 1660

for distinguishing nine human oral sub-locations. 1661

The original OTU and KO-based models yielded 1662

accuracies of 76.2% and 76.1%, respectively, while 1663

the hybrid model resulted in an accuracy of 77.7% 1664

(Ning and Beiko 2015). This result indicates that 1665

predicted functions may provide some additional 1666

information in combination with taxonomic data, but 1667

the consistency and biological significance of this 1668

small effect remains unclear. Further investigation 1669

into the integration of these data types within a 1670

machine learning context is needed to ensure that the 1671

highest-quality models possible are constructed. 1672

Outlook 1673

Herein we have described the unique characteristics 1674

of microbiome DNA data types and many of the ap- 1675

proaches that have been proposed for their analysis. 1676

Throughout we have emphasized two ideas. First, 1677

increased integration of taxonomic and functional 1678

microbiome data types is needed. And second, 1679

there is often high variation in the results between 1680

microbiome data analysis pipelines. 1681

Regarding the first point, we believe that several 1682

of the tools described above, such as FishTaco and 1683

phylogenize, largely solve the issue of how to jointly 1684

investigate taxa and functions. Increased usage and 1685

development of these and other related tools would 1686

greatly help with the interpretability of microbiome 1687

data. 1688

One area where further development is particu- 1689

larly needed is in the context of classification models, 1690

where little work has been conducted to systemat- 1691

ically link taxa and functions appropriately. One 1692

exception was a classification approach based on gene 1693

families that identified predictive genes and then sub- 1694

sequently identified metagenome assembled genomes 1695

within a given dataset enriched for these genes (Rah- 1696

man et al. 2018). However, this approach still relied 1697

on follow-up analyses rather than integrating the data 1698

types. Instead, an improved approach could be based 1699

on explicitly leveraging the hierarchical nature of 1700

microbiome data types. This is because functional 1701

and taxonomic data types independently form clear 1702

hierarchical structures (e.g. Pathway - Gene and 1703

Phylum - Class - Order, etc.). The connection 1704

between taxa and gene families and pathways is 1705
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more complex, but nonetheless, links between groups1706

of strains or ASVs and microbial functions can be1707

defined. A modified machine learning framework1708

that explicitly accounted for these relationships could1709

result in more interpretable outputs.1710

Regardless of the specific tool, microbiome re-1711

searchers should move towards more integration of1712

taxonomic and functional data. It is odd to distin-1713

guish between functional and taxonomic datatypes in1714

the first place: they are inextricably linked after all.1715

The term “metagenome” itself is in some ways unfor-1716

tunate as it implies that the genetic information for1717

all organisms in a community can be simultaneously1718

analyzed in a coherent way, without partitioning1719

genes into genomes. This may be valid for high-level1720

pathways but for generating hypotheses regarding1721

specific gene families it is too often misleading. This1722

perspective is becoming more common, as the avail-1723

ability of metagenome-assembled genomes increases1724

(Frioux et al. 2020).1725

The other common thread throughout this1726

manuscript has been that technical variation in mi-1727

crobiome data analyses means that making robust1728

biological inferences, especially regarding specific mi-1729

crobial features, is challenging. Indeed, the lack1730

of standardization in microbiome data analysis has1731

previously been strongly criticized. An assessment1732

of numerous papers attempting to define standard1733

pipelines concluded that there was disturbingly little1734

consensus (Pollock et al. 2018). This is true for1735

many steps related to the processing, sequencing,1736

and analysis of microbiome data. For instance,1737

there have been contradictory results regarding the1738

efficacy of different extraction protocols (Salonen et1739

al. 2010). In particular, underrepresentation of1740

Gram-positives has been observed (Maukonen et al.1741

2012), which may be partially resolved by using1742

bead-beating extraction protocols (Guo and Zhang1743

2013). There is also substantial technical variation1744

related to bioinformatics choices, which represent the1745

final steps of a microbiome project. For example,1746

as discussed above, the bioinformatics choices made1747

when performing differential abundance testing on1748

microbiome data can have severe impacts on any1749

interpretations (Thorsen et al. 2016; Hawinkel et al.1750

2019).1751

We have encountered similar issues with our1752

work, most strikingly when investigating pediatric1753

Crohn’s disease patients’ microbiome profiles (Dou-1754

glas et al. 2018). An important characteristic of1755

these data was that 98% of the sequenced reads1756

mapped to the human genome. This characteristic1757

made taxonomic profiling of these data especially1758

prone to false positives. In particular, an initial1759

draft of our manuscript was based on profiles that 1760

included large proportions of viral-identified DNA 1761

and matches to certain eukaryotic parasites. We were 1762

initially excited about these observations, because 1763

the abundances of these non-prokaryotic taxa were 1764

discriminative for classifying patient disease state 1765

and treatment response. However, the exact taxa 1766

identified were peculiar: they were predominately 1767

represented by a range of plant-associated viruses 1768

and the eukaryotic genus Plasmodium, which is best 1769

known as including the causative agent for malaria, 1770

Plasmodium falciparum. Upon closer investigation it 1771

became clear that this signal was driven entirely by 1772

a difference in how reads were mapped to lineage- 1773

specific marker genes. Altering the parameter choice 1774

from local to global mapping entirely removed these 1775

taxa. This relatively small difference in parameter 1776

choice appeared to only affect our data and not 1777

more typical microbiome datasets, which we believe 1778

was due to the high proportion of human DNA 1779

in our data. Although this error was moderately 1780

embarrassing, it was more importantly an example 1781

of how easily a single parameter setting can result 1782

in starkly different biological interpretations. In this 1783

case the difference was driven by an option used for 1784

a single bioinformatics tool. 1785

Such inconsistencies in microbiome analyses have 1786

previously been identified and been shown to make 1787

meaningful comparisons across studies challenging. 1788

For instance, associations between obesity and the 1789

human microbiome are commonly discussed as sup- 1790

port for the utility of considering microbial links 1791

with human disease, despite inconsistencies across 1792

studies (Castaner et al. 2018; Muscogiuri et al. 1793

2019). These inconsistencies are typically explained 1794

due to confounding variables that may differ between 1795

patient cohorts. Although this is a valid explanation, 1796

it is likely that technical variation, including in 1797

terms of bioinformatics analyses, also drives these 1798

inconsistencies. For instance, a meta-analysis of ten 1799

obesity human microbiome datasets identified only 1800

extremely weak signals when re-analyzing all datasets 1801

with a standardized approach (Sze and Schloss 2016). 1802

This finding greatly contrasts with how these studies 1803

were originally presented and again highlights how 1804

variation in bioinformatics can greatly affect how to 1805

biologically interpret microbiome data. 1806

Similarly lower alpha diversity in stool micro- 1807

biomes has been frequently linked with disease states 1808

(Mosca et al. 2016). These observations are intu- 1809

itively reasonable as reduced alpha diversity could 1810

enable pathogens to bloom (Vincent et al. 2013) or 1811

represent differences in resource availability (Turn- 1812

baugh et al. 2009). However a re-analysis of data 1813
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from 28 studies representing ten diseases was unable1814

to identify evidence for links between alpha diversity1815

and disease states (Duvallet et al. 2017). The1816

exceptions were diarrheal diseases and inflammatory1817

bowel diseases.1818

Such inconsistencies across analyses on the same1819

data are gradually coming to the forefront of the1820

microbiome field (Allaband et al. 2019). Indeed,1821

a recent plea for improved standardization has been1822

made to enable better comparisons across studies1823

(Hill 2020). This is a commendable goal, but given1824

the diversity of opinions regarding best-practices1825

(Callahan et al. 2016b; Knight et al. 2018; Schloss1826

2020), it is difficult to coherently recommend a single1827

workflow for analyses at the moment. Accordingly,1828

further work and benchmarking of different bioin-1829

formatics is needed to convincingly argue for best1830

practices in microbiome data analysis.1831

Until a clear consensus is reached it is the re-1832

sponsibility of microbiome researchers to make the1833

caveats and challenges facing this area clear to read-1834

ers and newcomers to the field. This is crucial given1835

the widespread interest in studying microbiomes1836

through DNA sequencing; the number of microbiome1837

sequencing-related publications continues to rapidly1838

grow. This is in tandem with funding for these1839

projects, which has steadily increased in the USA1840

from at least 2007 to 2016 (NIH 2019). According to1841

the US National Health Institute, there was US$7661842

million dollars invested in microbiome research in1843

2019, which was the 63rd most highly funded health-1844

related research category out of 291. Although1845

comparing across research categories of varying gran-1846

ularity is difficult, it is noteworthy that microbiome1847

research was more highly funded than both breast1848

cancer and Alzheimer’s disease research. Impor-1849

tantly, an increased interest in microbiome research is1850

warranted: recent technological developments are en-1851

abling improved investigations into microbial biology.1852

However, as the monetary investment and research1853

hours dedicated to microbiome research grows, it is1854

crucial that scientists ensure the best use of these1855

resources. Open discussions on the many contentious1856

aspects of microbiome data analysis would help with1857

this issue. Indeed, such clarifications by leaders in the1858

microbiome field are starting become more common1859

(Allaband et al. 2019). However, although these1860

contributions are valuable, they do not adequately1861

address the problem. In particular, instead of men-1862

tioning these issues in passing, inconsistencies be-1863

tween bioinformatics workflows should be emphasized1864

more clearly for the benefit of the uninitiated.1865

Another practical improvement would be to nor-1866

malize, and potentially require, explicit summaries1867

of the effects of technical variation on any biological 1868

interpretations reported in microbiome studies. This 1869

is impossible to capture entirely, but it could be 1870

done by comparing how key results change depending 1871

on a subset of representative bioinformatics choices. 1872

For instance, researchers could compare how insights 1873

change depending on the combinations of denoising 1874

tools and differential abundance methods that they 1875

have applied when analyzing 16S data. Although 1876

these changes would result in increased workloads 1877

when conducting analyses and when communicating 1878

results, they would help ensure that any major bio- 1879

logical findings are at least robust to a representative 1880

set of bioinformatics choices. 1881

Regardless of which approach is taken to address 1882

these issues, the most important point is that action 1883

is needed on this front. The variation between bioin- 1884

formatics methods is undeniable and unfortunately 1885

reflects a reproducibility crisis facing microbiome 1886

data analysis. 1887
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Reviewer 1 

Dear Gavin Douglas and Morgan Langille, 

In this review manuscript, you propose to deliver a detailed introduction to microbiome DNA sequence 
data types and analysis methods. You present marker-gene and shotgun DNA sequencing data types, 
discuss microbiome data characteristics and underscore the associated caveats. Then you present « the 
many-faceted concept of microbial functions ». You follow by a discussion on the problematic of 
functional annotation inferred from marker-gene data and you review the last development on the 
integration of taxonomy and function. Finally, you discuss reproducibility in microbiome research and 
provide an outlook with some personal experience. 

The main strength of your manuscript is that as a reader I learned something because you deliver an 
interesting review and discussion on the integration of taxonomic and functional microbiome data, 
backed up by first-hand and authoritative experience. However, the main weakness is that your message 
is diluted by a lengthy and unclear explanation of some concepts that are not always directly linked to 
your main discussion point.  

Therefore, I recommend a major revision of your manuscript. 

Sincerely, 

Nicolas Pollet 

Major comments:  

What is the audience ? The title says « A primer and discussion on DNA-based microbiome data and 
related bioinformatics analyses ». Since one aim is to deliver a primer, the reader is expected to be a 
non-expert, and therefore the discussion that follows is also expected to reach a non-expert in the field. 
Is this the case ? I don’t think so. In fact, I am unsure of the efficiency to pursue the goal of fulfilling 
the role of a primer AND a discussion on microbiome data for a reader completely new to the field and 
for the complicated topics presented here. Since the reader could be misled by the title, I think you need 
to change it to better represent the content of the text.  

Is the communication clear enough for a newcomer ? I think that you have to work on making your text 
more concise and more homogenous in terms of the depth of explanations. More and better iconography 
would help in this regard. The iconography should follow the main organization of the text : here you 
have six sections and only two figures. Figure 1 illustrates many aspects of the section on shotgun 
metagenomics, and figure 2 is an illustration on the integration of taxonomy and function. Figure 1d 
does not follow the text flow and I find this a bit strange.  

What is the review message ? In my opinion, the discussion on the integration of taxonomic and 
functional data is the main message. I advise you to strengthen this aspect by dropping some sections 
(see below). 

 How to make the message clearer ? If you decide to follow the path of considering the integration of 
taxonomic and functional data as the main message to deliver, then the text could be reorganized to 
make this message stronger and clearer. I wonder if the sometime high level of details provided 
regarding marker-gene sequencing, shotgun metagenomics and the characteristics of microbiome count 
data is really helping the reader. The text would benefit from being way more concise an more 
equilibrated among sections. In my opinion, you should seriously consider to skip the “primer” sections 
on marker-gene sequencing, metagenomic sequencing, characteristics of microbiome count data and 
microbial functions.  



I found that the discussion is the best part of the text, maybe because I am not a complete newcomer to 
the field. Your personal account is worthy, and maybe you could make it more precise (e.g. parameter 
choice from local to global using which tool ?). The last two sections are the most informative parts and 
in this regard.  

Accuracy : The terminology about microbiome is sound and corresponds to what has been previously 
discussed in the literature (Marchesi & Ravel, 2015). I found that the terminology used in the section 
microbial function is not always clear and does not simplify the presentation of the associated concepts 
(Karp, 2000)(Thomas, Mi & Lewis, 2007)(Kotera et al., 2014).  

Level of referencing : There are specific experimental approaches such as epicPCR that have been 
developed to tackle the integration of taxonomy and function; and this needs to be pointed out (Spencer 
et al., 2016). I think you should take a particular attention to be more homogeneous in the way you 
select the cited references. 

 Minor comments 

Since the review aims to deliver a detailed introduction, I suggest to expand a bit the terminology and 
definition that you provide rapidly for the term microbiome (one sentence on line 31-33), and possibly 
include a text-box with definitions. Maybe the ecological suffix -biome that refers to biotic and abiotic 
factors characterizing a given microbiome environment would broaden the scope. 

I fully understand that the topic is DNA-based sequencing for microbiome studies, but a pointer to 
RNA-based and protein-based sequencing would be a plus in the background, especially in the 
paragraph 45-67. In that same paragraph on culturing microbes, and given the theme of the integration 
between taxonomy and function, one possible additional point could be to discuss the discrimination of 
live, dormant and dead microorganisms (e.g. (Thomas, Mi & Lewis, 2007) (Jones & Lennon, 
2010)(Carini et al., 2016)(Blazewicz et al., 2013). 

In the background section presenting diversity analysis, I would like to underscore the work of Amy 
Willis and colleagues on modelling abundances as in my opinion it is an important advance in the 
analysis of diversity (Willis, 2019)(Willis & Martin). The purpose of this paragraph in the context of 
the review as a whole is unclear as it stands. 

I do not agree with the assertion that the dichotomy between phylogenetic and functional profiling of 
microbiomes is « entirely related to methodological challenges » (line 123). We know that the genome 
of prokaryotic species varies in gene content because of horizontal gene transfer, gene duplication and 
other mechanisms (Puigbò et al., 2014). It has been shown through pangenome analysis that strain 
variation can be associated with different metabolic potential (Goyal, 2018) (Maistrenko et al., 2020). 
Therefore, it seems to me that the dichotomy between phylogenetic and functional profiling of 
microbiomes is one of their intrinsic characteristics. Indeed, you develop these points line 1131-1172.  

 Marker-gene sequencing 

I advise to simplify the marker gene sequencing section if you want to keep it. While the paragraph 
from 149-202 are detailed and very informative, I am afraid that they depart from the global « 
granularity » of explanation and historical context provided on other aspects throughout the manuscript. 
This lengthen this section on marker genes comparatively to the other aspects developed in this review. 
And even if there are a lot of things to tell about 16S rRNA gene sequencing, many have already been 
told elsewhere in the literature. 

While I typically enjoy reading historical perspectives, I found that these are exaggeratedly long and 
placed in the manuscript in a non-logical manner.  



You copiously present 16S rRNA gene sequencing and this helps the reader for understanding the 
aspects on the integration of taxonomic and functional data. But you also consider other marker genes 
(and this is fine) and 18s rRNA gene sequencing for microeukaryote and fungi taxonomic profiling, but 
in a more concise manner. Yet the integration of taxonomic data obtained using such markers with 
shotgun sequencing data is not presented at all, and thus the reader does not benefit from this otherwise 
interesting piece of knowledge. 

The sentence line 211 would benefit from some simplification such as : 

« This is because if there are non-random substitutions within a single domain but random substitutions 
in the majority of other domains, there would likely be little effect on estimates of gene divergence. » 

I do not understand the reason for presenting redbiom at this point line 250 ? 

To further document your point on the limitations due to the use of short 16S amplicons (line 260-274), 
you could possibly cite the recent work of other groups such as (Abellan-Schneyder et al., 2021). 

The point dealing with the use of classical bacteria 16S primer-pairs do characterize Archaea could be 
expanded as it is often a neglected limitation in taxonomic surveys (Raymann et al., 2017; Bahram et 
al., 2019).  

The reference Fox et al 1992 is missing at line 235. I think it would be fair to reference deblur and 
UNOISE3 like it has been made for DADA2 software (line 336). 

Very Minor : italicize latin names (e.g Haloarcula line 382) 

  

Shotgun metagenomics sequencing 

Line 409 : including DNA viruses 

The impact of biomass and genome size as a limitation to MGS approach could be invoked (line 431). 
Also as a caveat emptor, the impact of host DNA and possible heterologous sequences on MGS data 
could be mentioned, (I wrote this sentence before reading your discussion !) and this would be a 
reflection of the discussion.  

In the MGS data analysis section devoted to the generation of taxonomic profile (line 477-522) , I would 
like to point out the targeted assembly of rRNA sequences from shotgun data embodied in Emirge 
(Miller et al., 2011), phyloFlash (Gruber-Vodicka, Seah & Pruesse, 2020) and MATAM (Pericard et 
al., 2018). 

I was surprised that the authors do not mention Kaiju as a read-based tool for taxonomic profiling 
(Menzel, Ng & Krogh, 2016). 

On the impact of databases for k-mer based analysis (Nasko et al., 2018).  

Line 560 : the citation of only these two assemblers is somehow partial, you could point to a review on 
metagenome assembly for the sake of comprehensiveness for the reader. Similarly the description of 
binning tools is very light in comparison to other aspects developed earlier. Here you could point to 
recent review papers on the subject.  



Line 584 : maybe use  « taxonomic profiling » instead of « profiling » 

Line 586 : I guess that the authors are referring to transcriptome studies, the term RNA sequencing is 
maybe not so precise in this context. 

Characteristics of microbiome count data :  

Maybe at some point the word abundance table could be used. 

Line 618-637 : Maybe a figure would be a better communication vector. 

The impact of sequencing reads processing on the analysis of abundance tables is somehow skipped : 
there are different practices such as removing singletons, filtering on prevalence etc . This could be 
somehow mentioned as they impact downstream analysis.  

Microbial functions 

This section is quite lengthy in comparison to others and since it covers topics that are not specific to 
microbiome studies, I wonder if it hits the sweet spot.  

Line 737 : « … focused on gene families, which are gene clusters. » It is not very clear what you are 
referring to in terms of gene cluster at this point. 

Line 781 : I do not know what is a UniRef function.  

What is described in this paragraph entitled microbial function is in fact a primer on protein databases 
and ontologies. I find therefore that the title is a bit misleading, maybe « Protein databases and 
ontologies for microbial genome functional annotation ». 

Line 976 : this method focuses pathway reconstruction … please correct the sentence. 

Line 1032 : philosophical perspective : really ? 

Line 1060 : The whole presentation of this paragraph is somehow paradoxal : maybe the text could be 
more explicit on ontology and semantics in order to guide the analysis of « functional data » at a given 
level of an ontology (protein space, biochemical activity, pathway, evolutionary conservation. 

Metagenome prediction methods 

Line 1090-1097 : some references would be welcome here. 

Lines 1101-1110 -1130: This historical account is perfect, but I wonder if the level of details provided 
is really needed to make the point that 16S diversity is not a perfect proxy of whole genome similarity. 

Current state of the integration of taxonomic and functional data types 

I enjoyed reading this section.  

Line 1313: “in some cases can be directly linked” Please be more precise and provide an example or a 
reference. 

Why the burrito software is not mentioned is unclear to me ? 



Outlook 

In my opinion, the paragraph 1726-1761 would benefit from citing additional recent references such as 
the MBQC study and a few others: (Sinha et al., 2017; Davis et al., 2018; McLaren, Willis & Callahan, 
2019; Greathouse, Sinha & Vogtmann, 2019).  

References 

I suggest to use a style for references that includes a DOI. 

  

Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, List M, Neuhaus 
K. 2021. Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing. mSphere 6. DOI: 
10.1128/mSphere.01202-20. 

Bahram M, Anslan S, Hildebrand F, Bork P, Tedersoo L. 2019. Newly designed 16S rRNA 
metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environmental 
Microbiology Reports 11:487–494. DOI: 10.1111/1758-2229.12684. 

Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. 2013. Evaluating rRNA as an indicator of 
microbial activity in environmental communities: limitations and uses. The ISME journal 7:2061–2068. 
DOI: 10.1038/ismej.2013.102. 

Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. 2016. Relic DNA is abundant in 
soil and obscures estimates of soil microbial diversity. Nature Microbiology 2:1–6. DOI: 
10.1038/nmicrobiol.2016.242. 

Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification 
and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. 
DOI: 10.1186/s40168-018-0605-2. 

Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA, Dahlhausen K, Ganz HH, Hartmann EM, 
Hsu T, Justice NB, Paulino-Lima IG, Luongo JC, Lymperopoulou DS, Gomez-Silvan C, Rothschild-
Mancinelli B, Balk M, Huttenhower C, Nocker A, Vaishampayan P, Rothschild LJ. 2017. Schrödinger’s 
microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5:86. 
DOI: 10.1186/s40168-017-0285-3. 

Goyal A. 2018. Metabolic adaptations underlying genome flexibility in prokaryotes. PLOS Genetics 
14:e1007763. DOI: 10.1371/journal.pgen.1007763. 

Greathouse KL, Sinha R, Vogtmann E. 2019. DNA extraction for human microbiome studies: the issue 
of standardization. Genome Biology 20:212. DOI: 10.1186/s13059-019-1843-8. 

Gruber-Vodicka HR, Seah BKB, Pruesse E. 2020. phyloFlash: Rapid Small-Subunit rRNA Profiling 
and Targeted Assembly from Metagenomes. mSystems 5. DOI: 10.1128/mSystems.00920-20. 

Jones SE, Lennon JT. 2010. Dormancy contributes to the maintenance of microbial diversity. 
Proceedings of the National Academy of Sciences 107:5881–5886. DOI: 10.1073/pnas.0912765107. 

Karp PD. 2000. An ontology for biological function based on molecular interactions. Bioinformatics 
(Oxford, England) 16:269–285. DOI: 10.1093/bioinformatics/16.3.269. 



Kotera M, Nishimura Y, Nakagawa Z, Muto A, Moriya Y, Okamoto S, Kawashima S, Katayama T, 
Tokimatsu T, Kanehisa M, Goto S. 2014. PIERO ontology for analysis of biochemical transformations: 
effective implementation of reaction information in the IUBMB enzyme list. Journal of Bioinformatics 
and Computational Biology 12:1442001. DOI: 10.1142/S0219720014420013. 

Maistrenko OM, Mende DR, Luetge M, Hildebrand F, Schmidt TSB, Li SS, Rodrigues JFM, von 
Mering C, Pedro Coelho L, Huerta-Cepas J, Sunagawa S, Bork P. 2020. Disentangling the impact of 
environmental and phylogenetic constraints on prokaryotic within-species diversity. The ISME Journal 
14:1247–1259. DOI: 10.1038/s41396-020-0600-z. 

Marchesi JR, Ravel J. 2015. The vocabulary of microbiome research: a proposal. Microbiome 3:31. 
DOI: 10.1186/s40168-015-0094-5. 

McLaren MR, Willis AD, Callahan BJ. 2019. Consistent and correctable bias in metagenomic 
sequencing experiments. eLife 8. DOI: 10.7554/eLife.46923. 

Menzel P, Ng KL, Krogh A. 2016. Fast and sensitive taxonomic classification for metagenomics with 
Kaiju. Nature Communications 7:11257. DOI: 10.1038/ncomms11257. 

Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF. 2011. EMIRGE: reconstruction of full-
length ribosomal genes from microbial community short read sequencing data. Genome Biology 12:1–
14. DOI: 10.1186/gb-2011-12-5-r44. 

Nasko DJ, Koren S, Phillippy AM, Treangen TJ. 2018. RefSeq database growth influences the accuracy 
of k-mer-based lowest common ancestor species identification. Genome Biology 19. DOI: 
10.1186/s13059-018-1554-6. 

Pericard P, Dufresne Y, Couderc L, Blanquart S, Touzet H. 2018. MATAM: reconstruction of 
phylogenetic marker genes from short sequencing reads in metagenomes. Bioinformatics 34:585–591. 
DOI: 10.1093/bioinformatics/btx644. 

Puigbò P, Lobkovsky AE, Kristensen DM, Wolf YI, Koonin EV. 2014. Genomes in turmoil: 
quantification of genome dynamics in prokaryote supergenomes. BMC Biology 12. DOI: 
10.1186/s12915-014-0066-4. 

Raymann K, Moeller AH, Goodman AL, Ochman H. 2017. Unexplored Archaeal Diversity in the Great 
Ape Gut Microbiome. mSphere 2. DOI: 10.1128/mSphere.00026-17. 

Sinha R, Abu-Ali G, Vogtmann E, Fodor AA, Ren B, Amir A, Schwager E, Crabtree J, Ma S, Abnet 
CC, Knight R, White O, Huttenhower C. 2017. Assessment of variation in microbial community 
amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nature 
Biotechnology 35:1077–1086. DOI: 10.1038/nbt.3981. 

Spencer SJ, Tamminen MV, Preheim SP, Guo MT, Briggs AW, Brito IL, A Weitz D, Pitkänen LK, 
Vigneault F, Juhani Virta MP, Alm EJ. 2016. Massively parallel sequencing of single cells by epicPCR 
links functional genes with phylogenetic markers. The ISME journal 10:427–436. DOI: 
10.1038/ismej.2015.124. 

Thomas PD, Mi H, Lewis S. 2007. Ontology annotation: mapping genomic regions to biological 
function. Current Opinion in Chemical Biology 11:4–11. DOI: 10.1016/j.cbpa.2006.11.039. 

Willis AD. 2019. Rigorous Statistical Methods for Rigorous Microbiome Science. mSystems 4. DOI: 
10.1128/mSystems.00117-19. 



Willis AD, Martin BD. Estimating diversity in networked ecological communities. Biostatistics. DOI: 
10.1093/biostatistics/kxaa015. 

 

Reviewer 2 

In this article, the authors propose an overview of the use of different approaches for microbiome data 
analyses, the questions that can be tackled using them, and their respective limitations. A particular 
focus is provided on the bioinformatics aspects, including an overview of the diversity of the most 
popular tools, and under which conditions/for which specific purposes they could be better used. 
Taxonomic and functional assignations tools are thoroughly discussed. And the crucial question of how 
to integrate the taxonomic and functional aspects. How marker-gene and shotgun metagenomic 
sequences (MGS) data are currently linked is exposed and the limitations of different approaches given. 
How the two approaches can lead to contradicting results, as well as the recurrent problem of 
reproducibility on microbiome data when using different bioinformatics pipelines are thoroughly 
discussed. Some interesting leads on how to make the field of microbiome biology more robust are 
given. 

The paper is very well-written and thorough on several aspects, including by explaining the main trends 
in “DNA-based microbiome data” analyses. It is very interesting both from the level of technical details 
that are given, and from the fact that it does the synthesis of the current major pitfalls in microbiome 
studies. I particularly enjoyed the “Overview” and the last section on “Current state of the integration 
of taxonomic and functional data types”. As such, beyond proposing a view of the current state-of-the-
art, I think this primer paper should contribute to the reflexion on what good practices could be taken, 
and which approaches are the most promising in order to make discoveries in microbiome studies more 
robust and reliable in the near future. 

In general, I thought the titles of the big sections could be improved to better reflect their content. A 
few sections might require a bit of rewriting for clarification, and I would like to raise some points that 
are listed below. 

  

1) The section “marker-gene sequencing”, where the case of the 16S rRNA amplicon sequencing is 
discussed at length (which is interesting!), is mostly dedicated to the particular task of characterizing 
the diversity within a community. However, it is only on lines 254-256 that the goal for using what is 
described as “robust marker genes” is introduced: “to characterize and compare the relative abundances 
of prokaryotes across communities.” 

I think the 1st page of the manuscript could be re-arranged, and clarified to explain the particular usage 
of marker-gene approaches that is exemplified here. 

  

- At the beginning of the section there is a discussion on the definition of a “robust marker gene”. But 
I believe this line of discussion depends on the goal of marker-gene sequencing – that should thus be 
introduced beforehand. Marker-gene approach can also be taken to question the presence of given 
metabolic processes in a particular environment. In which case, it is more important to fish for genes 
that are specifically involved in that process, leading even sometimes to multiply the set of probes to 
use in order to capture the diversity of the gene involved in the process of interest (some are paraphyletic 
for instance). In that case, the fact that the gene in question is a good molecular chronometer does not 
matter much, right? Or did I miss the point here? 



  

- Line 156: a more general term would be “homolog”, as “ortholog” limits to vertically transmitted 
marker genes (excluding duplicated or laterally transferred genes for instance). Unless if it is explained 
beforehand that a desirable property of a marker gene could be to be vertically inherited? Or is the term 
“ortholog” used here to suggest a conserved biological function? Please clarify. 

- In the end, I have the feeling that the first part of this 1st section kind of falls flat, as the authors write 
on lines 200-201: “Therefore, to select a robust marker gene one should adhere in some ways to the 
Goldilocks principle: some nucleotide conservation is needed, but not too much.” Maybe could this first 
part be shortened and be more straight-forward? 

2) Lines 270-272: Please clarify what you mean by “V4-V5 region overrepresented Firmicutes … while 
drastically underestimating Actinobacteria”. Do you mean that these regions are not present from 
Actinobacteria? Or that the diversity is over-estimated in Firmicutes and under-estimated in 
Actinobacteria based on this region? Same comment for line 290-291 for V1-V2 region. 

3) In the section “Shotgun Metagenomics Sequencing”, I felt like the topic of the contribution of MGS 
approach and MAG (metagenome assembled genomes) reconstruction to explore extant biodiversity 
was somehow missing (CPR, DPANN, Asgard archaea…). MGS helped to reveal novelties both at the 
taxonomic and functional level. As a conceptual advantage of the MGS approach, in spite of some 
biases highlighted by the authors, is that it is not needed to have an a priori of what is looked for. This 
is how some entire clades of archaea were missed by 16S approaches because of the probes being 
designed from known diversity (e.g. Raymann et al 2017, mSphere). 

- On lines 443-447 an example is given for taxa represented in 16S data but not MGS. To be fair, the 
converse is also true. I don’t say the authors do not explicitly mention that there are caveats with both 
approaches, but this is one could be worth to be reminded. 

- On lines 1004-1013, it could be added that techniques to bin MGS data as MAG could be a part of the 
solution. 

4) On “the concordance of differential abundance results between actual and predicted metagenomics 
profiles” (lines 1882-1294), any lead on why the results are agreeing only “moderately well”? 

5) Just a suggestion… Some figures could have been added to illustrate some parts of the text. 

- On lines 1222-1225, the principle on which relies PICRUSt for inferring function is introduced. It 
could have been illustrated by a figure. 

- On lines 1409-1412, “stacked barplots” are mentioned to be used to study functional shifts. Such a 
typical plot could have been borrowed from a published study for instance? 

  

6) In the Discussion part, it would have been interesting to have the authors opinions on the role that 
could play new sequencing techniques in the future to help with some of the issues presented? For 
instance, on the advent of long-reads sequencing for MGS? Don’t you think it could eventually be a 
way to integrate taxonomic and functional analyses, by linking for instance 16S genes to big contigs, 
obtaining better quality MAGs, etc…? 

 7) Minor points and typos: 



- A list of abbreviations should be included to help the reader. Otherwise, some of the less used 
abbreviations could be abandoned?              

 - Line 158: should it be “twice” instead of “double”? 

 - Line 1441 (and thereafter): maybe capitalize the tool name “phylogenize” to make it stand as a name 
in the text? 

 - Line 1445: “a taxa” => should be corrected by “a taxon”. 

 

Reviewer 3 

This review addresses many of the technical issues in the microbiome field. The text is very clear and 
concise, and it is very interesting for both initiated and uninitiated readers.  

In general, the main point of the MS is the challenge of integrating taxonomic data with functional data. 
I agree that this is an issue but I feel in general the review downplay too much the binning/MAG 
approach dealing with this issue. I also missed in the text any discussion regarding long reads and how 
the 3rd generation sequencing methods could help with some of the limitations. 

I have a few small comments that could improve the final version of the MS. 

Line 107: There is often more statistical power to detect overall differences based on alpha and beta 
108diversity metrics than to detect associations with individual features, but diversity-level insights are 
also less actionable (Shade 2017).  

- However, often the difference of abundance in individual taxa/rank is larger than the difference in 
diversity indexes, especially in host-microbiome studies. 

Line 422: This interest has culminated in the generation of enormous MGS datasets such as the ongoing 
work on the Earth Microbiome Project (Thompson et al. 2017) and the Human Microbiome Project 
(Lloyd-Price et al. 2017).  

-  Here another good and more recent example would be TARA oceans. 

Line 548: “genes are expressed in cells, not in a homogenized cytoplasmic soup" (McMahon 2015). 

-  Agreed, however many ecological functions are performed in a collaborative way by consortiums. 

 Line 670:  relative abundances by the mean relative abundance 

-   Should read geometric mean. 

Line 723: This discussion of microbiome data characteristics has focused on taxonomic features based 
on either 16S sequencing or read-based MGS data analysis. However, it is important to emphasize that 
count tables produced from MAGs do not resolve this issue. In fact, attempting to account for these 
challenging characteristics of microbiome count data and the links between taxa and function makes 
the analysis more difficult. 



- At the end of this, I would suggest a few lines about the network of co-abundances, for example using 
the SparCC tool. 


